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Abstract

Delegation bears an intrinsic form of uncertainty. Investors hire asset managers

for their superior information, but delegation outcome is uncertain precisely because

managers’ information is unknown to investors. We model investors’ delegation decision

as a trade-off between asset return uncertainty and delegation uncertainty. Our theory

explains several puzzles on fund performances. It also delivers asset pricing implications

supported by our empirical analysis: (1) because investors partially delegate and hedge

against delegation uncertainty, CAPM alpha arises; (2) the cross-section dispersion of

alpha increases in uncertainty; (3) managers bet on alpha, engaging in factor timing,

but factors’ alpha is immune to the rise of their arbitrage capital – when investors

delegate more, delegation hedging becomes stronger. Finally, we offer a novel approach

to extract uncertainty from asset returns, delegation, and survey expectations.

JEL Classification: D53, D81, D83, D84, G11, G40

∗We would like to thank Andrew Ang, Patrick Bolton, Jaroslav Borovic̆ka, Zhi Da, Stefano Giglio,
Lars Peter Hansen, Gur Huberman, Tano Santos, Thomas Sargent, José Scheinkman, Andrei Shleifer, and
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1 Introduction

Technological progress is often accompanied by a division of labor. In the era of big data,

a division of knowledge emerges and induces delegation: we hire data experts for tasks that

require skills in data collection and analysis.1 However, delegation carries an intrinsic form

of uncertainty, even in the absence of moral hazard. The delegation outcome depends on the

experts’ information that is unknown to us. This paper studies the implications of delegation

uncertainty on delegated portfolio management and asset pricing.

The asset management industry is being revolutionized by exploding data sources and

increasingly sophisticated techniques that help money managers better estimate the prob-

ability distribution of asset returns. In contrast, investors face difficulties in gauging prob-

abilities. We model two types of agents: managers who know the return distribution, and

investors who face model uncertainty (ambiguity) given by a set of probability distributions

(“models”). Investors pay managers to allocate part of their wealth, and allocate the re-

tained wealth under ambiguity.2 We abstract away from moral hazard, which is studied by

Miao and Rivera (2016) in a similar setup of heterogeneous belief. In this paper, managers

use their probability knowledge to allocate the delegated wealth on the efficient frontier.

Delegation improves investors’ welfare by reducing their exposure to ambiguity in the

returns of individual assets. As in Gennaioli, Shleifer, and Vishny (2015), such welfare view

resolves important puzzles in the asset management literature. For example, we characterize

conditions under which delegation happens even when managers underperform the market

or deliver zero alpha by holding portfolios proportional to the market.

However, delegation uncertainty remains – even though managers deliver the efficient

portfolio, the efficient frontier varies across probability models. Investors incorporate such

uncertainty in their delegation decision and hedge delegation uncertainty when allocating the

retained wealth. Their portfolio tilts towards assets whose returns move against the frontier

across models. Delegation hedging generates CAPM alpha, and the cross-section dispersion

of alpha increases in investors’ model uncertainty. Moreover, the alpha of delegation-hedging

assets is immune to the rise of arbitrage capital, i.e., the wealth allocated by managers, be-

cause when investors delegate more, their hedging against delegation uncertainty is stronger.

1The “division of knowledge” is a term borrowed from Hayek (1945) who describes the importance of price
system in sustaining the economic order in a world with a division of labor and “equally divided knowledge”.

2The management fee may represent the managers’ effort costs, agency cost, search and screening costs,
relative bargaining power, or other types of inefficiencies not modeled in the paper.
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In our model, professional asset managers and investors are different in their knowledge

of return distribution. To highlight such division of knowledge, we assume that investors do

not learn the probability distribution by observing managers’ allocation in asset markets,

and that managers cannot inform investors of the true return distribution.3

We provide closed-form solutions for investors’ delegation and the cross section of ex-

pected asset returns by solving a quadratic approximation of investors’ utility under ambigu-

ity.4 As a technical contribution, our approximation extends that of Maccheroni, Marinacci,

and Ruffino (2013) into functional spaces. When delegation is unavailable, and investors

are ambiguity-neutral, our approximation becomes the classic Arrow-Pratt approximation,

which generates the mean-variance portfolio of Markowitz (1959) and a CAPM equilibrium.

In our setup, delegation offers investors model-contingent allocation of wealth. Asset

managers can be viewed as portfolio formation machines with the knowledge of true return

distribution as input and the corresponding efficient portfolio as output. In investors’ mind,

the overall structure of uncertainty is a two-step lottery: first, a probability model is drawn

and observed by managers who allocate the delegated wealth on the efficient frontier; second,

a state of the world is drawn according to the probability model. Therefore, the delegation

portfolio is model-contingent, and the delegation return is both state- and model-contingent.

Delegation improves investors’ welfare by offering access to efficient allocation under

each probability model – whichever model is true, managers know it and allocate efficiently.

However, delegation does not eliminate ambiguity. It transforms ambiguity from the returns

of individual assets to that of the efficient frontier. Investors’ optimal delegation depends on

the trade-off between the welfare gains from such transformation and the management fees.5

This new perspective on delegation explains the puzzling findings that investors dele-

gate in spite of unconvincing performances of managers. Investors cannot evaluate perfor-

mances under rational expectation, so econometricians’ performance measurements are based

on an information set different from investors’. How delegation improves welfare depends on

3Learning under model uncertainty (ambiguity) has been studied by Epstein and Schneider (2007), and
in the asset pricing literature, Leippold, Trojani, and Vanini (2008), Ju and Miao (2012) and Choi (2016).
Mele and Sangiorgi (2015) study agents’ information acquisition under Knightian uncertainty. Pástor and
Stambaugh (2012) study how investors’ Bayesian learning affects their delegation decision.

4We assume smooth ambiguity aversion utility function proposed by Klibanoff, Marinacci, and Mukerji
(2005) and Nau (2006) and discussed by Epstein (2010) and Klibanoff, Marinacci, and Mukerji (2012).
Ghirardato, Maccheroni, and Marinacci (2004) take an axiomatic approach to study the separation between
ambiguity and agents’ attitude towards ambiguity.

5Appendix IV illustrates how our framework can be used as a normative model to guide the delegation
choice of investors under model uncertainty.
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the structure of model uncertainty. We characterize conditions under which delegation arises

even if managers underperform the market, deliver negative alpha after fees, or simply hold

portfolios proportional to the market portfolio (Fama and French (2010); Lewellen (2011)).

Our focus on subjective welfare echoes that of Gennaioli, Shleifer, and Vishny (2015).

Investors are averse to the cross-model comovement between asset returns and the

delegation (i.e., frontier) return. They hedge against delegation uncertainty, which induces a

two-factor structure in the expected asset returns: a standard CAPM market risk premium,

and a model uncertainty premium (“alpha”) that increases in the level of delegation and

model uncertainty. Specifically, investors favor assets whose returns move against that of

the frontier across probability models. Such assets have low (or negative) alpha. Investors

avoid assets whose returns comove with that of the frontier. Such assets have high alpha.

One would expect assets’ alpha to converge to zero if the economy approaches full del-

egation (e.g., driven by declining management fees), because managers with mean-variance

portfolios almost dominate the asset markets. However, this is not the case. The more in-

vestors delegate, the stronger they hedge against delegation uncertainty per dollar of retained

wealth. The increasing hedging motive counter-balances the decreasing share of wealth man-

aged by investors themselves, which sustains the CAPM alpha. Therefore, our model sheds

light on why certain investment strategies still deliver alpha in spite of the growing arbitrage

capital, i.e., the money managed by professionals who know those “anomalies”.

Our model delivers other asset pricing implications. The market risk premium declines

in the level of delegation, which suggests that as the asset management sector grows, the

security market line will be increasingly flat. Following Bewley (2011), we simplify investors’

model uncertainty by relating it to the statistical errors in parameter estimation. The overall

level of ambiguity and investors’ sentiment, which is directly mapped to survey expectations,

emerge as the key determinants of the cross-section variation of asset returns.6 This simplified

setup is later used to extract ambiguity from asset returns, delegation, and survey data.

We test the model assumptions and asset pricing implications using the U.S. equity

factors that are well studied in the literature of empirical asset pricing. We use factors rather

than individual stocks because a parsimonious factor structure largely spans stock returns.7

6Our model does not feature limits to arbitrage, but due to delegation uncertainty, investors’ sentiment
survives in the expected asset returns even if the level of wealth professionally managed approaches 100%.

7Among a large set of firm characteristics that have been proposed to predict returns in the cross section,
Hou, Xue, and Zhang (2015) show that a four-factor model summarizes the cross section of average returns,
Freyberger, Neuhierl, and Weber (2017) identify a small subset that provide distinct information, and Kozak,

3



The main prediction of the model is that assets deliver smaller CAPM alphas if they

are viewed by investors as insurance against delegation uncertainty. Measuring investors’

subjective belief is challenging, so we take a revealed-preference approach. Following an

increase of model uncertainty, investors overweigh delegation-hedging assets. Therefore,

we calculate the correlation between a factor’s individual-investor ownership and measures

of uncertainty. High-correlation assets are revealed by investors’ choice as the delegation-

hedging assets, and consistent with the model’s prediction, they have smaller CAPM alpha.

Next, we characterize how the cross section of factors’ CAPM alphas and returns

vary over time. Our model predicts that the cross-section dispersion increases in periods of

higher uncertainty because investors engage in stronger delegation hedging. We find a strong

correlation between the alpha (and return) dispersion and various uncertainty measures.

The key assumption of our model is that managers have superior knowledge of return

distribution. Since the cross section of factors vary over time, we should observe managers

tilting portfolios towards factors with desirable distributional properties. We sort factors by

their institutional ownership (INST ), and find those with high INST outperform those with

low INST. Parametric tests confirm this finding: one standard-deviation increase of INST

adds 1.76% (annualized) to a factor’s future return, which is a 53% increase over the average

return in our sample. Moreover, factors with high-INST factors also have high Sharpe ratios.

Finally, we calculate investors’ model uncertainty by fitting the equilibrium conditions

of asset markets directly to the data of factor returns, delegation, and survey of investors’

expectations (Greenwood and Shleifer (2014)). The model-implied uncertainty exhibits cycli-

cal dynamics and peaks around market turmoils, such as the dot-com bubble and the Great

Recession. Our measure contains information distinct from alternative uncertainty measures

in the literature, but exhibits comovement. The correlation ranges from 0.11 to 0.51.

Literature. Our paper furthers the studies on ambiguity, i.e., the lack of knowledge of prob-

ability distribution (Knight (1921)). Ellsberg paradox is an example of ambiguity aversion.8

Widely cited as a challenge to the expected utility theory (e.g., Dow and Werlang (1992)),

ambiguity aversion has been introduced in various fields in economics, such as asset pricing

(e.g., Boyarchenko (2012), Cao, Wang, and Zhang (2005), Chen and Epstein (2002), Epstein

and Wang (1994), Garlappi, Uppal, and Wang (2007), Horvath (2016), Maenhout (2004),

Nagel, and Santosh (2017) find the principal components approximate the stochastic discount factor well.
8A version of it was noted by John Maynard Keynes in his book ”A Treatise on Probability” (1921).
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Illeditsch (2011), Ilut (2012), Ju and Miao (2012)), real option (Miao and Wang (2011)),

corporate governance (Izhakian and Yermack (2017)), market microstructure (Condie and

Ganguli (2011); Easley and O’Hara (2010); Ozsoylev and Werner (2011); Vitale (2018)),

and policy intervention in crises (Caballero and Krishnamurthy (2008)). Epstein (2010),

Guidolin and Rinaldi (2010), and Hansen and Sargent (2016) review the literature.

Our setup is a special case of the multi-agent environments discussed by Hansen and

Sargent (2012). Here one type of agents (investors) face ambiguity while the other (managers)

do not. Closely related, Miao and Rivera (2016) study the corporate finance implications of

optimal contracting between a principal, who faces ambiguity, and an agent, who knows the

probability. We differ by abstracting away moral hazard and focusing instead on the asset

pricing implications of delegation uncertainty that is intrinsic to the division of knowledge.

The incentive problems in delegation under ambiguity are also studied by Fabretti, Herzel,

and Pınar (2014) and Rantakari (2008). Hirshleifer, Huang, and Teoh (2017) study whether

investors’ market participation can be improved by introducing funds whose allocation is

contingent upon ambiguous asset supply. We differ by emphasizing investors’ hedging against

delegation uncertainty, and its implications on the cross-section variation of asset returns.

Our results are purely driven by the belief heterogeneity between investors and man-

agers. Managers are endowed with informational advantage, and unlike Bhattacharya and

Pfleiderer (1985), investors know managers’ ability. In the recent literature, Gârleanu and

Pedersen (2018), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), Huang (2016),

Sockin and Zhang (2018) study fund managers’ information acquisition. Pástor and Stam-

baugh (2012) model investors’ learning of the value-added from delegation. We also abstract

away incentive problems of fund managers, which has been studied in a large literature (e.g.,

Basak and Pavlova (2013), Binsbergen, Brandt, and Koijen (2008), Buffa, Vayanos, and

Woolley (2014), Chevalier and Ellison (1999), Cuoco and Kaniel (2011), Dow and Gorton

(1997), Guerrieri and Kondor (2012), He and Xiong (2013), Heinkel and Stoughton (1994),

Kaniel and Kondor (2013), Leung (2014), Starks (1987), Ou-Yang (2003)). Moreover, our

results do not rely on fund flow dynamics (Berk and Green (2004)) or the heterogeneity in

fund characteristics (Pástor, Stambaugh, and Taylor (2017)).

While the economic mechanism is simple, our model helps understand a variety of

puzzling findings. Since Jensen (1968), a large literature has documented that asset man-

agers fail to beat passive benchmarks or deliver “alpha” (e.g., Barras, Scaillet, and Wermers
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(2010), Carhart (1997), Del Guercio and Reuter (2014), Fama and French (2010), Gruber

(1996), Malkiel (1995), Wermers (2000)). Specifically, Fama and French (2010) find that the

aggregate portfolio of actively managed U.S. equity funds is close to the market portfolio (see

also Lewellen (2011)), and few funds produce sufficient benchmark-adjusted returns to cover

their costs. Nevertheless, the asset management sector has been growing dramatically. Fol-

lowing Gennaioli, Shleifer, and Vishny (2015), we propose an alternative perspective based

on subjective welfare, and characterize the conditions under which managers underperform

the market, deliver negative alpha after fees, and hold portfolios proportional to market.

This paper contributes to the asset pricing literature by characterizing a hedging de-

mand that arises from the heterogeneity of probability knowledge. Ambiguity hedging is also

emphasized by Drechsler (2013), who show that investors pay a premium for index options to

hedge model misspecification. Moreover, we decompose assets’ expected returns into risk and

ambiguity premia, with the prices of risk and ambiguity dependent on the endogenous level

of delegation. The ambiguity premium is positive even if investors are not ambiguity-averse,

which is in stark contrast to the existing literature (e.g., Brenner and Izhakian (2017), Ep-

stein and Schneider (2008), Kogan and Wang (2003), Trojani and Vanini (2004), Ui (2011)).

Through delegation, investors’ return on wealth is both state- and model-contingent, so even

ambiguity-neutral investors cannot average out model uncertainty for each state of the world,

acting as expected-utility agents. They have to deal with the joint uncertainty in both the

state and model space. We are the first to show that delegation arises from ambiguity, and

at the same time, fundamentally changes its role in agents’ decision making.9

On the empirical side, we find that the cross section of factors’ returns and CAPM

alphas is partly spanned delegation uncertainty, and that its dispersion varies with the

level of uncertainty. Moreover, we provide new evidence on factor timing (Cohen, Polk, and

Vuolteenaho (2003); Moreira and Muir (2017)). Related to our revealed-preference approach,

Greenwood and Hanson (2012) use firms’ equity issuance decisions to time factors, assum-

ing that firm managers have superior information. Finally, our paper offers new evidence

on the relationship between institutional ownership and factor premia. Nagel (2005) find

the unconditional factor premia are most pronounced among stocks with low institutional

ownership. We find that the conditional factor premia increase in institutional ownership.

9We show that delegation transforms the ambiguity on individual assets to that on the efficient frontier,
and its implications on asset pricing. Uppal and Wang (2003) emphasize different types of ambiguity (the
overall ambiguity and that on a subset of assets) and study the implications on under-diversification.

6



Finally, we use the model’s asset-market equilibrium conditions to back out ambiguity

from investor survey. Our approach is related to Bhandari, Borovička, and Ho (2016) who

use macroeconomic models to extract ambiguity shocks from survey data on households’

expectations about inflation and unemployment. Based on the theory of Izhakian (2014),

Brenner and Izhakian (2017) extract investors’ ambiguity from intraday data of stock prices.

2 Model

2.1 The Setup

The economy has N risky assets, a risk-free asset with return rf , and a unit mass of repre-

sentative investors. Each investor is matched with a fund manager. Agents make decisions

at date 0. Asset returns are realized at date 1. The vector of asset returns, r = {ri}Ni=1, is a

mapping from Ω, the set of states of the world at date 1, to real numbers, r : Ω 7→ RN .

Endowed with one unit of wealth, an investor chooses δ, the fraction of wealth invested

in the fund, and allocates the retained wealth 1 − δ according to wo, a column vector of

portfolio weights on the N risky assets (superscript “o” for the investor’s “own” portfolio).

The penniless fund manager chooses wd, the delegation portfolio.

Information and preference. The investor makes decisions under ambiguity (model un-

certainty). A non-singleton set, ∆, contains candidate probability distributions of r (“mod-

els”). For Q ∈ ∆, the investor assigns a prior π (Q) of Q being the true model.

The investor’s preference is represented by the smooth ambiguity-averse utility func-

tion in Klibanoff, Marinacci, and Mukerji (2005). It separates ambiguity from the attitude

toward ambiguity, which is important for our analysis.10 The utility is defined over the

investor’s terminal wealth, rδ,wo,wd , whose subscripts show the dependence on delegation δ,

the investor’s own portfolio wo, and the delegation portfolio wd. The utility is

V
(
rδ,wo,wd

)
=

∫
∆

φ

(∫
Ω

u
(
rδ,wo,wd

)
dQ (ω)

)
dπ (Q) (1)

φ (·) and u (·) are strictly increasing functions and twice continuously differentiable. The

concavities of u (·) and φ (·) capture risk and ambiguity aversion respectively.

10Epstein (2010) and Klibanoff, Marinacci, and Mukerji (2012) discuss the experimental evidence.
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The fund manager knows the true model, denoted by P , and acts as a portfolio for-

mation machine that delivers the corresponding efficient portfolio, wd (P ). We will specify

wd (P ) after introducing the quadratic approximation of investor utility. To access this “ma-

chine”, the investor pays a proportional management fee ψ.11 While existing models typically

assume that managers have better information on the first moment by obtaining return sig-

nals, here managers’ skill is in a general form of distribution knowledge. Busse (1999) finds

volatility-timing by mutual funds (see Chen and Liang (2007) for hedge funds).12 Jondeau

and Rockinger (2012) calculate the welfare improvements from general distribution timing.

We provide our own evidence on managers’ distribution knowledge in Section 3.

Delegation as model-contingent allocation. From the investor’s perspective, for any

Q ∈ ∆, if it is the true model, the manager knows it and constructs the corresponding efficient

portfolio, wd (Q). Therefore, delegation makes the investor’s wealth model-contingent :

rδ,wo,wd = (1− δ)
[
rf + (r− rf1)T wo

]
+ δ

[
rf + (r− rf1)T wd (Q)

]
= rf + (r− rf1)T

[
(1− δ) wo + δwd (Q)

]
, Q ∈ ∆. (2)

The investor’s own portfolio is a N -dimensional vector, wo ∈ RN . In contrast, the delegation

portfolio, wd, is a mapping from the model space to real numbers, r : ∆ 7→ RN . Through

delegation, the return on wealth becomes a mapping from the state and model spaces to

real numbers, rδ,wo,wd : Ω×∆ 7→ R. Without delegation (i.e., δ = 0), the return is given by

rf + (r− rf1)T wo, which is just a mapping from the state space, Ω, to R.

As in Segal (1990), let us consider an imaginary economy with two stages: (1) the in-

vestor chooses δ and wo; (2) the probability model is drawn and known by the manager who

allocates the delegated wealth. Therefore, delegation allows investors to achieve efficient al-

locations under each possible model. However, delegation uncertainty remains – the efficient

portfolio, wd (Q), varies across probability models. The manager cannot inform the investor

which model is true; otherwise, the delegation uncertainty disappears. This captures the

realistic obstacles in the communication between managers and investors.

11In richer settings, ψ can be determined by the competition among managers, the competition among
investors, managers’ costs of effort and information acquisition, investors’ search costs, agency cost, etc.

12Ferson and Mo (2016) propose to measure to evaluate managers by both market and volatility timing.
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2.2 Quadratic Approximation

To solve the investor’s delegation and portfolio allocation in closed forms, we approximate

the utility function in a quadratic fashion by extending the results of Maccheroni, Marinacci,

and Ruffino (2013, MMR) into functional spaces. MMR does not allow agents’ wealth to be

model-contingent. We adopt their technical regularity conditions.

Definition 1 A representative investor’s certainty equivalent is defined by

C
(
rδ,wo,wd

)
= υ−1

(∫
∆

φ

(∫
Ω

u
(
rδ,wo,wd

)
dQ (ω)

)
dπ (Q)

)
, (3)

where υ is a composite function υ = φ ◦ u.

The investor’s delegation and portfolio problem is given by

max
wo,δ

{
C
(
rδ,wo,wd

)
− ψδ

}
(4)

where rδ,wo,wd is the return on wealth (Equation (2)) and ψ is the asset management fee.

We define two parameters, risk aversion and ambiguity aversion, respectively in a small

neighborhood of the return on wealth around the risk-free rate rf .

Definition 2 At risk free return rf , the local absolute risk aversion γ is defined as

γ = −u
′′ (rf )

u′ (rf )
(5)

and marginal-utility-adjusted, local ambiguity aversion θ is defined as

θ = −u′ (rf )
φ′′ (u (rf ))

φ′ (u (rf ))
(6)

To present the quadratic approximation of investor utility, we introduce several no-

tations. We denote the excess return of a portfolio, w, by Rw = (r− rf1)T w, and its

expectation under Q ∈ ∆, by Rw
Q = EQ

[
(r− rf1)T w

]
. For a random variable X and given

Q ∈ ∆, let EQ (X) and σ2
Q (X) denote the expectation and variance respectively if X is

a scalar, and µXQ and ΣX
Q denote the expectation vector and the covariance matrix respec-

tively if X is a vector. Given Q ∈ ∆, the covariance of two random variables, X and Y , is
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covQ (X, Y ). We define the investor’s average model under the prior, π,

Q (A) =

∫
Q∈∆

Q (A) dπ (Q) , for any A ⊂ Ω. (7)

Following MMR, we approximate the certainty equivalent using the Taylor expansion in

the space of portfolio weights. Since the delegation portfolio weights, wd (Q), are functionals

defined on the model (probability) space, our Taylor expansion relies on the generalized

Fréchet derivatives in the Banach spaces. The proof is provided in Appendix I.

Proposition 1 (Quadratic Preference) The smooth ambiguity-averse preference over the

state- and model-contingent return, rδ,wo,wd, is represented by the certainty equivalent,

C
(
rδ,wo,wd

)
=rf + (1− δ)2Rwo

Q
− (1− δ)2

2

(
γσ2

Q

(
Rwo)

+ θσ2
π

(
Rwo

Q

))
+

δEπ

(
Rwd

Q

)
− δ2

2

[
γEπ

(
σ2
Q

(
Rwd

))
+ θσ2

π

(
Rwd

Q

)]
− (θ + γ) (1− δ) δcovπ

(
Rwo

Q , Rwd

Q

)
+R

(
wo,wd

)
,

(8)

where R
(
wo,wd

)
is a high-order term that satisfies lim(wo,wd)→0

R(wo,wd)
‖(wo,wd)‖2 = 0.

As in MMR, the residual term can be ignored if portfolios are sufficiently diversified

with matrix/L2 norms close to zero. The approximation allows us to intuitively understand

the investor’s preference. The utility increases in Rwo

Q
, the Q-expected excess return on the

investor’s retained wealth, and its sensitivity, (1− δ)2, decreases in the level of delegation δ.

The utility decreases in σ2
Q

(
Rwo)

, the Q-variance of excess return on retained wealth, and

the risk sensitivity increases in γ, the risk aversion. The utility decreases in σ2
π

(
Rwo

Q

)
, which

measures ambiguity, i.e., the cross-model variation of the expected excess return, Rwo

Q . The

ambiguity sensitivity increases in θ, the ambiguity aversion. As investors delegate more, i.e.,

δ increases, the sensitivities to risk and ambiguity of return on retained wealth both decline.

The delegation return enters into the utility in a similar fashion. The utility increases

in Eπ

(
Rwd

Q

)
, which is the expected excess return from delegation averaged over models,

Eπ

(
Rwd

Q

)
=

∫
Q∈∆

EQ

[
(r− rf1)T wd (Q)

]
dπ (Q) ,

whereRwd

Q is theQ-expected excess return from delegation. The utility decreases in σ2
π

(
Rwd

Q

)
,
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which measures ambiguity, i.e., the cross-model variation of expected excess return from del-

egation, and its sensitivity increases in θ, the ambiguity aversion. The utility decreases in

Eπ

(
σ2
Q

(
Rwd

))
, a measure of risk averaged by π over models, and its sensitivity increases

in γ, the risk aversion. The sensitivities to delegation ambiguity and risk both increase in δ.

The terms discussed so far can be summarized into two categories: (1) the expected

returns and return variances and covariances (“risk”) averaged over models; (2) the cross-

model variance of the expected returns (“ambiguity”). The approximation shows how these

statistics enter into utility through risk aversion, ambiguity aversion, and delegation.

The last term deserves more attention. The cross-model covariance between the ex-

pected delegation return and the expected return on retained wealth enters the investor’s

utility with a negative sign. It captures a cross-model hedging motive. When allocating the

retained wealth, the investor prefers assets that deliver high expected returns under mod-

els where the expected delegation return is low. The utility’s sensitivity is maximized at

δ = 1
2
. Intuitively, the comovement between the delegation performance and the investor’s

own investment matters the most when her wealth is split 50/50.

Finally, we show that our quadratic approximation nests MMR’s solution and the

mean-variance utility as special cases.

Corollary 1 Without delegation, i.e., δ = 0, the approximation degenerates to the quadratic

approximation in Maccheroni, Marinacci, and Ruffino (2013):

C
(
rf + (r− rf1)T

[
(1− δ) wo + δwd (Q)

])
≈ rf +Rwo

Q
− γ

2
σ2
Q

(
Rwo)− θ

2
σ2
π

(
Rwo

Q̀

)
. (9)

Without delegation and ambiguity aversion, i.e., δ = 0 and θ = 0, our approximation degen-

erates to the mean-variance utility under the average model Q:

rf +Rwo

Q
− γ

2
σ2
Q

(
Rwo)

. (10)

Delegation portfolio. The investor informs her risk aversion, γ, to the manager who forms

a mean-variance efficient portfolio given his knowledge of the true model. In the investor’s

mind, for any Q ∈ ∆, if it is the true model, the managers solves

max
wd

{(
µr
Q − rf1

)T
wd − γ

2

(
wd
)T

Σr
Q

(
wd
)}

.
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The delegation portfolio is a mapping from the model space to real numbers, wd : ∆ 7→ RN ,

wd (Q) =
(
γΣr

Q

)−1 (
µr
Q − rf1

)
. (11)

2.3 Investor Optimization

We solve the optimal level of delegation δ and the investor’s portfolio wo by maximizing the

quadratic approximation given by Equation (8). Details are provided in Appendix II.

Proposition 2 (Optimal Delegation) Given the optimal portfolio wo, the investor’s op-

timal delegation level δ is given by

δ =
Eπ

(
Rwd

Q

)
−Rwo

Q
− (θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
− ψ

Eπ
(
Rwd

Q

)
−Rwo

Q
− (θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
+ θσ2

π

(
Rwd

Q

) . (12)

Delegation increases if the delegation return is expected to be high across models

(high Eπ

(
Rwd

Q

)
), and if it does not vary a lot across models (low σ2

π

(
Rwd

Q

)
). Delegation

decreases if the investor achieves a high return on her own, (high Rwo

Q
), and if across models,

the expected return on retained wealth comoves closely with the expected delegation return

(high covπ

(
Rwo

Q , Rwd

Q

)
). The investor are averse to such cross-model comovement.

Proposition 3 (Investor Portfolio) Given the optimal level of delegation δ, the investor’s

own portfolio of risky assets is given by

wo
δ =

(
γΣr

Q
+ θΣ

µrQ
π

)−1
[(

δ

1− δ

)(
µr
Q
− rf1

)
− (θ + γ)

(
δ

1− δ

)
covπ

(
µr
Q, R

wd

Q

)]
︸ ︷︷ ︸

Delegation Hedging

. (13)

Without delegation, the investor’s portfolio is
(
γΣr

Q
+ θΣ

µrQ
π

)−1 (
µr
Q
− rf1

)
, which is

MMR’s solution.13 Risk is measured by Σr
Q

, the covariance matrix of asset returns under

the average model Q. It is scaled by γ, the risk aversion. Ambiguity is measured by Σ
µrQ
π ,

the cross-model covariance of expected asset returns, µr
Q. It is scaled by θ, the ambiguity

aversion. If θ = 0, the portfolio degenerates to the formula of Markowitz (1959) under Q.

13Garlappi, Uppal, and Wang (2007) derive a similar portfolio by incorporating estimation errors in ex-
pected returns as a source of ambiguity (a maxmin approach as in Gilboa and Schmeidler (1989)).
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When δ > 0, the portfolio exhibits a hedging demand from covπ

(
µr
Q, R

wd

Q

)
, the cross-

model covariance between the expected asset returns, µr
Q, and the expected delegation return,

Rwd

Q . The investor knows that whichever model is true, the manager knows it and constructs

the efficient portfolio accordingly, but the true model is still unknown. Therefore, the investor

designs her own portfolio to hedge such ambiguity.

The hedging demand does not disappear even if we shut down ambiguity aversion

(θ = 0). The intuition can be explained by inspecting an ambiguity-neutral investor’s utility,

V (rω,Q) =

∫
Q∈∆

∫
ω∈Ω

u (rω,Q) dQ (ω) dπ (Q) ,

where the subscripts of return on wealth, ω and Q, highlight that the return is state-

dependent, and through delegation, model-contingent. An ambiguity-neutral investor cannot

perform Bayesian model averaging and operates under Q, but instead, has to deal with the

joint uncertainty of state and model. Therefore, the cross-model covariance between the ex-

pected asset returns and the expected delegation return still appears in investors’ portfolio

choice even if the investor is risk-averse (i.e., having concave u (·)) but not ambiguity-averse.

Let covπ

(
µri
Q , R

wd

Q

)
denote the i-th element of covπ

(
µr
Q, R

wd

Q

)
. It is the cross-model co-

variance between asset i’s expected return and the delegation return. When covπ

(
µri
Q , R

wd

Q

)
>

0, the investor reduces exposure to asset i; When covπ

(
µri
Q , R

wd

Q

)
< 0, the investor tilts her

portfolio towards asset i, buying an insurance against delegation uncertainty. Next we ex-

plore the implications of delegation hedging on the cross-sectional variation of asset returns.

2.4 The Cross-Section of Asset Returns

We characterize the cross section of expected asset returns and their CAPM alpha. First, we

show that when delegation is unavailable, our model reproduces the key theoretical findings

in the current asset pricing literature. Next, we show how delegation changes the results.

To understand the impact of ambiguity, and in particular, delegation uncertainty, on

the cross section of asset returns, we use CAPM as the natural benchmark. Here, when asset

returns follow normal distributions and u (·) is the CARA (constant absolute risk aversion)

utility, the delegation portfolio, wd (Q), maximizes the expected utility. Therefore, without

ambiguity, investors and managers both choose the mean-variance portfolio and the asset-

market equilibrium is CAPM. Ambiguity causes the deviations from CAPM.
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Equilibrium without delegation. We define the market portfolio m, which is the sum of

investors’ and managers’ asset demands and is also equal to the exogenous asset supply:

m = δwd (P ) + (1− δ) wo. (14)

When delegation is unavailable, the investor’s portfolio is given by

wo
0 =

(
γΣr

Q
+ θΣ

µrQ
π

)−1 (
µr
Q
− rf1

)
, (15)

where the subscript “0” is for “zero-delegation”. Since δ = 0, substituting m = wo
0 into

Equation (15) and multiplying both sides by
(
γΣr

Q
+ θΣ

µrQ
π

)
, we have

µr
Q
− rf1 =

(
γΣr

Q
+ θΣ

µrQ
π

)
m. (16)

Note that Σr
Q
m is simply the vector of covariance under Q between the asset returns and the

market return, and Σ
µrQ
π m is the covariance under π between the expected asset returns and

the expected market return. The former measures risk while the latter measures ambiguity. If

investors’ average model is true, i.e., Q = P , the left-hand side is the assets’ expected excess

returns under the true probability measure, and the right-hand side offers a decomposition.

Proposition 4 (Ambiguity Premium without Delegation) When delegation is unavail-

able, the equilibrium expected excess returns of risky assets are

µr
P − rf1 =λmβ

P
r,m + λwo

0
βπµrQ,m, (17)

if investors’ average model is the true model, i.e., Q = P . Here we define: (1) the market

price of risk, λm = γσ2
P (Rm), and the risk beta, βPr,m = covP (r,Rm)

σ2
P (Rm)

; (2) The market price of

ambiguity, λwo
0

= θσ2
π

(
Rm
Q

)
, and the ambiguity beta, βπµrQ,m =

covπ(µrQ,Rm
Q )

σ2
π(Rm

Q )
.

Equation (17) decomposes the expected excess returns. The first component is the

standard CAPM beta multiplied by the standard price of risk (the return variance scaled

by γ). The second component is an ambiguity premium. The ambiguity beta measures

the cross-model comovement between the expected asset returns and the return of investors’

(market) portfolio. If asset i has a positive beta (i.e., βπ
µ
ri
Q ,m

> 0), it delivers a higher average
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return. If asset i’has a negative beta, it serves as a hedge against model uncertainty and

delivers a lower average return. Ambiguity beta is priced at λwo
0

= θσ2
π

(
Rm
Q

)
, which is the

total amount of ambiguity in the expected market return scaled by θ, the ambiguity aversion.

The assumption of Q = P is important. Under ambiguity, investors cannot evaluate

the assets’ expected returns under the true model. Instead, they evaluate assets by averaging

over models, and require fair compensations for risk and ambiguity under Q. Only if Q = P ,

the expected returns under investors’ average model, µr
Q

, coincide with the expected returns

under the true model, which are observed by econometricians through the average returns.

Otherwise we cannot solve µr
P using the optimality condition on investor’s portfolio choice.

The ambiguity premium is CAPM alpha as in MMR. They analyze a special case of

two assets where one has pure risk (known distribution) while the other bears ambiguity.

Kogan and Wang (2003) derive the similar decomposition of expected returns using the

constrained-robust approach. In those models and here, if we shut down ambiguity aversion,

the price of ambiguity, λwo
0

= θσ2
π

(
R

wo
0

Q

)
, is zero, and the model degenerates to CAPM.

Corollary 2 (CAPM without Delegation) When delegation is unavailable and investors

are ambiguity-neutral (θ = 0), the expected excess returns of risky assets are given by

µr
P − rf1 = λmβ

P
r,m. (18)

if the investors’ average model is the true model (i.e., Q = P ).

If the investor is ambiguity-neutral, the investor’s utility function can be written as

V (rω) =

∫
∆

∫
ω∈Ω

u (rω) dQ (ω) dπ (Q) =

∫
ω∈Ω

u (rω)

[∫
∆

dQ (ω) dπ (Q)

]
=

∫
ω∈Ω

u (rω) dQ (ω) ,

where the subscript ω of return on wealth highlights the fact that the return is only state-

dependent. The investor behaves as an expected-utility agent under Q and chooses the

standard mean-variance portfolio under the quadratic utility, so if Q = P , we rediscover

CAPM. It is critical that u (r) can be taken out of the integral operator,
∫

∆
, on the model

space, because r is not model-dependent. Once delegation is available, r is both state- and

model-dependent, so the equilibrium deviates from CAPM even without ambiguity aversion.

Equilibrium with delegation. When delegation is available, the market portfolio is equal
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to a mixture of managers’ portfolio and investors’ portfolio, i.e., m = δwd (P ) + (1− δ) wo.

We arrange the fund manager’s portfolio, wd (P ) = (γΣr
P )−1 (µr

P − rf1), under the true

probability distribution P , and arrive at the following expression of expected excess returns:

µr
P − rf1 = (γΣr

P ) wd (P ) .14 (19)

Using the rearranged market clearing condition, wd (P ) = 1
δ
m−

(
1−δ
δ

)
wo, we rewrite (19),

µr
P − rf1 =

1

δ
γΣr

Pm︸ ︷︷ ︸
CAPM Component

+

(
1− δ
δ

)
γΣr

P (−wo)︸ ︷︷ ︸
CAPM Alpha

. (20)

Using the definition of market beta in Proposition (4), we can write the first term

on the right-hand side as the product of assets’ market beta, βPr,m = covP (r,Rm)

σ2
P (Rm)

, and a new

price of risk, λδ = γ
δ
σ2
P (Rm), which now depends on delegation. Specifically, an increase

in δ leads a decrease in the market price of risk, i.e., a flatter security market line. This

property is in line with the concurrence of a growing asset management industry and a

declining equity premium in the U.S. market (documented by Jagannathan, McGrattan,

and Scherbina (2001), Lettau, Ludvigson, and Wachter (2008) among others).

Substituting investors’ portfolio (Equation (3)) into the second component, we have

α = γΣr
P

(
γΣr

Q
+ θΣ

µrQ
π

)−1
[(

1− δ
δ

)
(θ + γ) covπ

(
µr
Q, R

wd

Q

)
︸ ︷︷ ︸

Delegation Hedging

−
(

1− δ
δ

)(
µr
Q
− rf1

)]
︸ ︷︷ ︸

Average Belief

, (21)

which has one component from investors’ hedging against delegation uncertainty and the

other from investors’ average belief of expected returns (“sentiment”). A high sentiment is

associated with a low ambiguity premium. This component disappears if δ approaches 100%.

The other component from delegation hedging is immune to the changes of delegation

level. As δ approaches 100%, the hedging motive becomes increasingly strong as shown by

the coefficient,
(

δ
1−δ

)
, of covπ

(
µr
Q, R

wd

Q

)
in investors’ portfolio (Equation (13)). Therefore,

even if investors manage less wealth when δ increases, they hedge more per unit of retained

wealth. When we substitute investors’ portfolio into Equation (20), this coefficient exactly

14Note that because µr
P already shows up in managers’ portfolio, we do not need to assume Q = P to

solve the equilibrium expected returns as we did for the case without delegation.
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offsets
(

1−δ
δ

)
, the ratio of retained-to-delegated wealth,in the CAPM alpha.

Proposition 5 (Delegation and Ambiguity Premium) The expected excess returns of

risky assets are given by

µr
P − rf1 = λδβ

P
r,m +α. (22)

The market betas, βPr,m, are defined in Proposition 4. The price of risk, λδ, is γ
δ
σ2
P (Rm). The

CAPM alpha is given by Equation (21), which depends investors’ average belief,
(
µr
Q
− rf1

)
,

and the cross-model covariance the assets’ expected returns and the expected delegation return,

covπ

(
µr
Q, R

wd

Q

)
. When δ approaches 100% (due to declining management fees or changes in

model uncertainty), α converges to γΣr
P

(
γΣr

Q
+ θΣ

µrQ
π

)−1

(θ + γ) covπ

(
µr
Q, R

wd

Q

)
.

When δ is precisely equal to 100%, we have m = wd (P ), and CAPM reemerges:

µr
P − rf1 = βPr,mλm, (23)

where λm = Rwd

P = Rm
P . However, as long as δ < 100%, investors need to allocate their

retained wealth under ambiguity. The more they delegate, the stronger they hedge against

delegation uncertainty. Therefore, even if the wealth managed by investors declines and the

wealth allocated on the mean-variance frontier rises, the increasingly strong hedging demand

of investors sustains the CAPM alpha and generates a discontinuity at the limit of δ = 100%.

Interestingly, even if we may shut down ambiguity aversion, i.e., θ = 0, the delegation-

hedging component of ambiguity premium still exists. This property distinguishes our model

from the existing models that feature zero ambiguity premium if agents are not ambiguity-

averse. As in the discussion of investors’ portfolio choice (Equation (13)), here the intuition

can be explained by inspecting an ambiguity-neutral investor’s utility function,

V (rω,Q) =

∫
Q∈∆

∫
ω∈Ω

u (rω,Q) dQ (ω) dπ (Q) .

Due to delegation, the return on wealth is both state- and model-dependent. As a result, the

investor cannot perform Bayesian model averaging as she does in the case without delegation,

and has to deal with the joint uncertainty of state and model. Therefore, covπ

(
µr
Q, R

wd

Q

)
,

the hedging motive, appears in investors’ portfolio and the ambiguity premium even if θ = 0.

In the past few decades, asset management industry has grown dramatically, especially
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in the area of quantitative investment that targets alphas identified in the academic literature.

Many have argued that the strategies’ alphas shrink as arbitrage capital increases (e.g.,

McLean and Pontiff (2016)). Yet many strategies survive, and we will show an example in

Section 3. Together they constitute a rich set of “anomalies” in asset pricing. Our model

sheds light on such phenomena. Professional asset managers obtain arbitrage capital mainly

through investors’ delegation. As delegation increases, investors’ hedging against delegation

uncertainty becomes stronger, which sustains the CAPM alpha.

2.5 Delegation and Fund Performances

Simplifying model uncertainty. Here we simplify the structure of investors’ model un-

certainty to derive intuitive comparative statics for the optimal delegation and characterize

conditions under which delegation happens in spite of funds underperforming the market.

We will also solve asset pricing conditions under the simplified model uncertainty that can

be directly mapped to data for our empirical analysis in Section 3.

We make three assumptions that lead to typical settings of delegation – managers

and investors differ in the knowledge of first moments of return distribution. For example,

managers may receive return signals that improve the precision of expected-return estimates.

Assumption 1 The investor knows the true covariance matrix: for any Q ∈ ∆, Σr
Q = Σr

P .

Given the quadratic approximation of investor utility, the relevant model uncertainty

is now only in the expected returns, which is captured by the cross-model covariance, Σ
µrQ
π

under the prior π.15 This case of known covariance and unknown expected returns echoes the

observation by Merton (1980). Kogan and Wang (2003) also consider this case in their study

of portfolio selection under ambiguity. The next assumption links ambiguity to volatility.

Assumption 2 The investor’s subjective belief over the expected returns is given by a normal

distribution, whose covariance is proportional to the true return variance:

µr
Q ∼ N

(
µr
Q
, υΣr

P

)
. (24)

15Boyle, Garlappi, Uppal, and Wang (2012), and Ilut and Schneider (2014) introduce ambiguity through
the uncertainty in the mean in models of financial markets and macroeconomy respectively.
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Since µr
Q ∼ N

(
µr
Q
, υΣr

P

)
, υ that parameterizes the level of model uncertainty. This

setup echoes the interpretation of ambiguity as statistical errors by Bewley (2011).16 We

may interpret υ as the inverse of sample size. If the investor has T observations of rt, the

method-of-moment estimator of the expected return is 1
T

ΣT
t=1rt and its covariance is 1

T
Σr
P .

Therefore, Σ
µrQ
π = υΣr

P with υ = 1
T

. A larger υ means a smaller sample and larger estimation

errors. It is natural to assume that υ < 1 because 1
T
< 1 for non-singleton samples.

Assumption 3 υ < 1.

The normality assumption of the prior over µr
Q brings technical convenience. Specifi-

cally, the expected delegation return can be decomposed as follows,

Rwd

Q =
(
µr
Q − rf1

)T
wd (Q) =

(
µr
Q − rf1

)T
(γΣr

P )−1 (µr
Q − rf1

)
=

(
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

)
︸ ︷︷ ︸

Chi-squared

+ 2
(
µr
Q
− rf1

)T
(γΣr

P )−1︸ ︷︷ ︸
constant vector

(
µr
Q − µr

Q

)
︸ ︷︷ ︸

Normal

+ Rwd

Q︸︷︷︸
constant

,

where the distributional properties are labeled below each term. Using Isserlis’ theorem

and the properties of Chi-squared and normal distributions, we solve in Appendix III the

summary statistics in investors’ optimal portfolio and delegation. In particular, we have

covπ

(
µr
Q, R

wd

Q

)
=

2υ

γ

(
µr
Q
− rf1

)
, (25)

so the strength of delegation hedging depends on the level of model uncertainty, υ. This

property helps directly map several model implications to data, for example, helping us back

out investors’ ambiguity from data on assets’ CAPM residuals and delegation in Section 3.

Proposition 6 (Comparative Statics) Under the three assumptions, the investor’s port-

folio is given by

wo =

(
1

γ + θυ

)
(Σr

P )−1

[(
µr
Q
− rf1

)
− (γ + θ)

(
δ

1− δ

)
2υ

γ

(
µr
Q
− rf1

)]
. (26)

16Bewley (2011) formulated the argument that confidence intervals are measures of the level of ambiguity
associated with the estimated parameters. Easley and OHara (2010) adopt a similar formulation.
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The optimal delegation decision is given by

δ =

υ
γ
N − ψ +

[
1− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)]
Rwd

Q(
1 + 2 θυ

γ

)
υ
γ
N +

[
1 + 4 θυ

γ
− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)2
]
Rwd

Q

, (27)

where Rwd

Q
is the expected delegation return under the average model, Q. We have the

following results of comparative statics:

1 The optimal level of delegation δ increases in N , the number of risky asset, i.e., ∂δ
∂N

> 0.

2 The optimal level of delegation δ decreases in θ, the ambiguity aversion, υ, the level

of ambiguity, and ψ, the management fee, while increases in γ, the risk aversion, i.e.,

∂δ
∂υ
< 0, ∂δ

∂θ
< 0, ∂δ

∂ψ
< 0, and ∂δ

∂γ
> 0, if N is sufficiently large.

3 Given the delegation level δ, investors’ positions in risky assets, wo, decrease in θ, the

ambiguity aversion, and υ, the level of ambiguity, i.e., ∂wo

∂υ
< 0 and ∂wo

∂θ
< 0.

Under the simplified ambiguity, N , the number of assets, shows up in the investor’s

delegation and portfolio choices because, as previously discussed, the expected delegation

return follows a Chi-squared distribution under the prior π and N appears in its mean and

variance as the degree of freedom (details in Appendix III). Intuitively, as the number of risky

assets increases, delegation brings more welfare improvements by transforming the ambiguity

of many individual assets into the cross-model variation of a single efficient frontier.

We may interpretN as the number of risk factors instead of primitive assets. If there are

an infinite number of assets with returns spanned by N factors and their idiosyncratic shocks,

by the law of large numbers, investors can diversify away and ignore idiosyncratic shocks

for any model as long as it is not a point-mass distribution. Back-of-envelope calculation

shows that Equation (27) produces reasonable levels of delegation. If N = 10, γ = 5, θ = 1,

Rwd

Q
= 4%, ψ = 1% and υ = 1/100, we have δ = 49%. It rises to 99% if N = 1000.17

Holding N constant, delegation decreases in ambiguity aversion (θ) and the level of

ambiguity (υ), and increases in risk aversion (γ). The upside of delegation is that within

a probability model, wealth is allocated efficiently, while the downside of delegation (aside

17In Appendix IV, we obtain the model uncertainty from a Bayesian learning problem, and illustrate how
to incorporate it into the general delegation formula in Proposition 12.
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from the management fee) is the exposure to delegation uncertainty, i.e., the cross-model

variation of frontier. When model uncertainty and the aversion to it are higher, the latter

dominates; when risk aversion is higher (and thus, it is more costly to be away from the

frontiers), the former is more valued. The sum of portfolio weights on risky assets, i.e.,

1Two, is the total risky investment. The investor becomes more conservative, when facing

more ambiguity or having a higher level of ambiguity aversion.18

Fund performances. As reviewed by French (2008), the evidence on average fund per-

formance suggests that investors are better off not delegating and instead holding indices.

This poses a challenge to understand the growth of professional asset management in recent

decades. In this paper, we shift the focus from ex post performance to ex ante welfare.

Performance measurement assumes that investors have the econometricians’ belief (i.e.,

rational expectation). In reality and our model, investors face model uncertainty. Delegation

improves welfare by transforming ambiguity from individual assets to the frontier and making

investors’ delegated model-contingent. When choosing the level of delegation, the trade-off

is between within-model allocation efficiency and cross-model delegation uncertainty.

Next, we compare the performance of funds and the market return, and show that

even if the latter dominates under rational expectation, delegation may still be positive for

investors under ambiguity. Substituting the investor’s portfolio (equation (26)) into the

market clearing condition, we solve the expected market excess return under the true model:

Rm
P = δRwd

P + (1− δ)Rwo

P

= (µr
P − rf1)T (γΣr

P )−1

[
(µr

P − rf1) δ +
(
µr
Q
− rf1

)((1− δ) γ − δ2υ (θ + γ)

γ + υθ

)]
.

The expected excess return of the delegation portfolio is

Rwd

P = (µr
P − rf1)T (γΣr

P )−1 (µr
P − rf1)

The difference between the two, Rwd

P −Rm
P , is equal to

(1− δ) (µr
P − rf1)T (γΣr

P )−1

[
(µr

P − rf1)−
(
µr
Q
− rf1

)(γ − ( δ
1−δ

)
2υ (θ + γ)

γ + υθ

)]
, (28)

18This is consistent with the comparative statics in settings without delegation (e.g., Gollier (2011)).
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which is also the average performance difference in a large sample.

Proposition 7 (Delegation and Underperformance) Under the simplified ambiguity,

fund managers underperform the market if

N∑
i=1

wd
i (P ) (µri

P − rf ) < κ
N∑
i=1

wd
i (P )

(
µri
Q
− rf1

)
,

where wd
i (P ) is the managers’ portfolio weight on asset i, and the constant κ is given by

κ =
γ −

(
δ

1−δ

)
2υ (θ + γ)

γ + υθ
, (29)

which increases in θ and υ and decreases in γ.

Whether the managers underperform or outperform the market depends on the com-

parison between the weighted-average of assets’ expected returns under the true model and

that under the investors’ average model (scaled by κ). Because investors also trade assets,

managers’ performance depends on their relative aggression in risk- and ambiguity-taking.

For example, if investors have in mind a high-return market (i.e. high µr
Q

), they trade

aggressively and earn a higher average return through more exposure to risk and ambiguity.

Therefore, in our model, delegation can arise in spite of managers’ underperformance

relative to the market. Investors do not know the true model, so they cannot evaluate fund

performances under rational expectation and choose between funds and the market index.

Note that we do not impose any restriction on investors’ portfolio choice, so holding the

market portfolio is certainly within investors’ opportunity set.

Another commonly used performance metric is funds’ CAPM alpha (Jensen (1968)).

Let us consider the case where µr
Q

= µr
P , and as a result, investors’ portfolio is proportional

to the delegation portfolio (and the market portfolio):

wo =

(
1− (γ + θ)

(
δ

1−δ

)
2υ
γ

γ + θυ

)
(Σr

P )−1 (µr
P − rf1) . (30)

Therefore, CAPM holds. A regression of funds returns on the market return shows exactly

zero alpha in a large sample. After management fees, investors receive negative alpha from

delegation. Moreover, managers hold the market portfolio up to a scaling factor, as have

22



already been documented in the empirical literature (e.g., Lewellen (2011)).

Proposition 8 (Delegation and Alpha) Under the simplified ambiguity, if µr
Q

= µr
P , the

delegation portfolio has zero alpha (negative after fees) and is proportional to the market.

Another interesting implication of our model is that even if managers possess supe-

rior knowledge and know the true model, this may not help them to generate “market

risk-adjusted return”. This result challenges the traditional approach of fund performance

measurement: an asset management firm could be active in acquiring the knowledge of true

return distribution, but such effort is unlikely to be compensated if we only look at alpha.

Simplified ambiguity premium. We derive several conditions on the relation between

model uncertainty and assets’ CAPM alpha that directly guide our empirical analysis. Under

the three assumptions, the CAPM alpha in Equation (21) becomes

α =

[(
2 (θ/γ + 1)

θ/γ + 1/υ

)
︸ ︷︷ ︸
Delegation Hedging

−
(

1

1 + υθ/γ

)(
1− δ
δ

)]
︸ ︷︷ ︸

Zero-Delegation Component

(
µr
Q
− rf1

)
. (31)

The cross-sectional variation of α is from
(
µr
Q
− rf1

)
, the vector of expected excess returns

under investors’ average model. Therefore, α dispersion becomes larger if its coefficient

increases, for example when model uncertainty increases (higher υ). In Section 3, we test

whether the cross-section dispersion of CAPM alpha increases when uncertainty rises.

Proposition 9 (Uncertainty and Alpha Disperstion) Given δ, the cross-section dis-

persion of alpha increases in model uncertainty, υ, as shown by Equation (31).

As δ approaches 100%, the component of CAPM alpha from the zero-delegation part

of investors’ portfolio shrinks to zero, while the component from delegation hedging remains.

Interestingly, investors’ average belief, which reflects potential behavioral biases, survives in

α through delegation hedging. This is not due to the limits to arbitrage in the existing

models of behavioral finance (Barberis and Thaler (2003)). Here when investors delegate

more, feeding managers with more arbitrage capital, they hedge more. Hedging against

delegation uncertainty sustains alpha.19

19Our model does not speak to the evolution of wealth distribution between rational and irrational agents
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Another application of our theory is to extract investors’ model uncertainty from data.

Measuring model uncertainty is very challenging because, by nature, ambiguity is subjective.

However, as shown by Equation (31), if the model uncertainty, υ, varies over time, the relation

between alpha and investors’ expectations varies. Therefore, if we could obtain a measure

of investors’ expectations, i.e.,
(
µr
Q
− rf1

)
, we can back out the dynamics of investors’

model uncertainty by projecting assets’ CAPM residuals on investors’ expectation in rolling

windows while controlling for the delegation level. In Section 3, we estimate investors’ model

uncertainty by using surveys on investors’ expectations as proxy for
(
µr
Q
− rf1

)
.

Proposition 10 (Extracting Model Uncertainty from Data) Conditional on the level

of delegation, δ, the relation between assets’ CAPM alpha and investors’ expectations under

the average model reveals the level of model uncertainty, as shown by Equation (31).

3 Evidence

We provide evidence on our model assumptions and main results using data on asset returns,

assets’ ownership by funds and individual investors in the U.S. stock market.

3.1 Data and Variable Construction

Our model is built upon the assumption that investors and managers have different beliefs

on asset returns. Our main results, and in particular, the cross section of assets’ CAPM

alpha, are determined by investors’ subjective model uncertainty. The challenge in testing

our model assumption and results is that we do not observe investors’ and managers’ be-

liefs. Therefore, taking a revealed-preference approach, we examine their beliefs through the

observed portfolio rebalancing and test the model predictions on asset returns.

Asset space. We use the well-studied equity factors instead of individual stocks as the

asset universe, because these factors largely span individual stocks’ returns. Factors can be

over time. Goldman and Slezak (2003) study persistent erroneous information in asset prices from shorter
tenures of fund managers than the time it takes for their private information to become public. Many
studies focus on asset-price distortions due to managers’ incentive problems, such as Basak and Pavlova
(2013), Buffa, Vayanos, and Woolley (2014), Cuoco and Kaniel (2011), Dow and Gorton (1997), Guerrieri
and Kondor (2012), Kaniel and Kondor (2013). Gârleanu and Pedersen (2018), Huang (2016), Kacperczyk,
Van Nieuwerburgh, and Veldkamp (2016), and Sockin and Zhang (2018) emphasize information acquisition.
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either accounting-based or return-based. Accounting-based factors include value (“HML”),

accruals (“ACR”), investment (“CMA”), profitability (“RMW”), and net issuance (“NI”).

Return-based factors include momentum (“MOM”), short-term reversal (“STR”), long-term

reversal (“LTR”), betting-against-beta (“BAB”), idiosyncratic volatility (“IVOL”), and total

volatility (“TVOL”). To construct each factor, we use monthly and daily returns data of

stocks listed on NYSE, AMEX, and Nasdaq from the Center for Research in Securities Prices

(CRSP).20 We obtain accounting data from annual COMPUSTAT files.21

We construct each factor in the typical HML-like fashion by independently sorting

stocks into six value-weighted portfolios by size (“ME”) and the factor characteristic. We

use standard NYSE breakpoints – median for size, and 30th and 70th percentiles for the factor

characteristic. A factor’s return is the value-weighted average of the two high-characteristic

portfolios minus that of the two low-characteristic portfolios. We rebalance accounting-based

factors annually at the end of each June and rebalance the return-based factors monthly.

Portfolio allocation. To measure investors’ factor allocation, we use the Thomson-Reuters

13F Database from 1980Q1 to 2016Q4, which covers stock ownership by mutual funds, hedge

funds, insurance companies, banks, trusts, pension funds, and other institutions. For each

stock, we sum the institutional holdings and define the remaining fraction as individual

ownership (“INDV ”) following Gompers and Metrick (2001) and Fang and Peress (2009).

Ideally, we would like to treat each factor as an asset and compute the fraction owned

by individual investors. However, factors are comprised of numerous stocks and different

factors have overlapping constituents. For example, stock A could be in the long leg of value

factor and the short leg of momentum factor. Instead of calculating the exact ownership, we

calculate the relative over- or under-weight of each factor by individual investors. Specifically,

we measure the spread of aggregate INDV between the factor’s long leg and short leg:

INDVi,t = INDV long
i,t − INDV short

i,t (32)

where INDV j
i,t, j ∈ {long, short}, is the value-weighted average of the individual ownership

of all constituent stocks in j leg of factor i.

20We include ordinary common shares (codes 10 and 11) and adjust delisting with CRSP delisting returns.
21We follow the convention and lag accounting information by six months (Fama and French (1993)). If a

firm’s fiscal year ends in Dec. of year t, we assume information is available at the end of Jun. of year t+ 1.
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We follow a similar approach to measure managers’ factor ownership, but only use

data on mutual funds because their investment objective code (IOC) can be obtained from

CRSP. We select funds focusing on the U.S. stock market using IOC, excluding International,

Municipal Bonds, Bond & Preferred, and Balanced.22 We aggregate fund holdings for each

stock. Stocks are assumed to have zero fund ownership if they appear in CRSP but without

any reported fund holdings. We calculate the relative over- or under-weight of each factor

by managers as the spread of fund ownership (“INST”) between the long leg and short leg:

INSTi,t = INST longi,t − INST shorti,t (33)

where INST ji,t, j ∈ {long, short}, is the value-weighted average of fund ownership of all

constituent stocks in j leg of factor i. If managers find factor i’s return distribution is

desirable, they increase exposure to i, and accordingly, INSTi,t increases.

Uncertainty measures. We obtain measures of uncertainty in the existing literature to

test our model predictions and to compare with our model-implied measure of uncertainty.

In particular, we consider the first principal component (UPCAt ) and cross-sectional average

(UCSAt ) of uncertainties estimated using macro and financial variables from Jurado, Ludvig-

son, and Ng (2015); Economic Policy Uncertainty (EPU) and news-based Economic Policy

Uncertainty (EPUnews) from Baker, Bloom, and Davis (2016); CBOE stock market volatil-

ity indexes V IX and V XO (Williams (2015)). We include volatility measures because, as

shown in Section 2.5, volatilities affect the uncertainty (estimation errors) in the mean.23

Investor expectations. To extract investors’ ambiguity from data, we need investors’

expectations on asset returns under the average model, Q. We use the survey forecasts from

the American Association of Individual Investors Sentiment Survey (“AA”), which measures

the percentage of individual investors who are bullish, neutral, or bearish on the stock market

22We apply standard filters following the literature: (1) we pick the first vintage date (“FDATE”) for each
fund-report date (FUNDNO-RDATE) pair to avoid stale information; (2) we adjust shares held by a fund
for stock splits that happen between report date (“RDATE”) and vintage date (“FDATE”). As a robustness
check, we select only active domestic equity funds, and find similar results (available upon request).

23Related, Driouchi, Trigeorgis, and So (2018) introduce ambiguity into the Black-Scholes model through
Choquet-Brownian motions, and measure ambiguity by minimizing the absolute error between index options
prices and the model-implied values. Andreouyz, Kagkadisx, Maio, and Philipz (2014) measure ambiguity
using the dispersion of index option strike prices. Ulrich (2013) uses inflation entropy to measure ambiguity.
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for the next six months.24 Following Greenwood and Shleifer (2014), we construct a time

series of investor expectations by subtracting the percentage of bearish investors from the

percentage of bullish investors, and average the weekly data to monthly frequency.

Table 1 reports summary statistics of factor returns, the factors’ fund and investor

ownership, the uncertainty measures, and the survey expectations.

[ Insert Table 1 here. ]

3.2 The Cross Section of Factor Alpha

We test our main results on asset pricing, Proposition 5, and characterize the cross section

of factors’ CAPM alpha. The challenge is that as shown in Equation (21), alphas (ambiguity

premia) depend on investors’ subjective belief, i.e., the set of candidate models, ∆, and their

prior, π, which cannot be estimated from data. To address this issue, we back out investors’

belief from the observed portfolio rebalancing, taking a revealed-preference approach.

Consider an increase of model uncertainty. Investors’ hedging against delegation un-

certainty becomes stronger. They increase positions in assets whose expected returns move

against that of the efficient frontier across models (delegation-hedging assets), while de-

crease positions in assets whose expected returns comove with that of the efficient frontier.

We rank factors by the correlation between individual ownership (INDV ) and uncertainty.

The model predicts smaller CAPM alphas of assets with higher correlations, which, revealed

by investors’ portfolio rebalancing, offer better insurance against delegation uncertainty.

[ Insert Table 2 here. ]

Table 2 confirms the prediction. We divide the eleven factors into equal-weighted high

(“H”) portfolio (six factors) and low (“L”) portfolio (five factors) by the correlation between

a factor’s individual ownership and the uncertainty measure, UPCAt , from Jurado, Ludvigson,

and Ng (2015). The annualized CAPM alphas are reported together with t-statistic. The

alpha of H portfolio is indistinguishable from zero. It contains delegation-hedging assets

because investors overweigh these assets as uncertainty rises. The L portfolio, which exposes

investors to more delegation uncertainty, carries a CAPM alpha of 2.67%. The L-minus-H

24Greenwood and Shleifer (2014) show that this qualitative measure captures similar dynamics as the
quantitative measures from surveys that explicitly ask individuals’ numeric expectations of market returns.

27



portfolio has a significant CAPM alpha of 2.59%. In the right panel, we estimate CAPM

alphas after controlling for the delegation level, which maps more closely to Equation (21).

Table A.1 in the appendix shows a similar pattern when other uncertainty measures are

used.

[ Insert Figure 1 and 2 here. ]

Figure 1 plots the CAPM alphas of H and L portfolios estimated in 60-month rolling

windows. Except for a period in the early 2000s, the alpha of H portfolio dominates that of

L portfolio. This suggests that the results in Table 2 are not driven by a particular episode.

In Panel A of Figure 2, we plot the full-sample alphas of all factors against the corre-

lation between their individual ownership and uncertainty, and in Panel B, we control for δ.

The model predicts a negative relation in the cross section (a downward-sloping regression

line), which largely holds in data except for the momentum factor. For comparison, we plot

the cross section without momentum in Panel C and D.

3.3 Uncertainty and Time-Varying Alpha Dispersion

Having characterized the cross section of factor alphas, we next test our model’s prediction

on how the cross section varies over time. Proposition 9 states that given δ, the cross-section

dispersion of alpha increases in the level of model uncertainty (Equation (31)).

[ Insert Figure 3 here.]

Figure 3 plots for each month, the cross-section dispersion (the difference between

maximum and minimum) of factors’ CAPM residuals against each of the six uncertainty

measures. The uncertainty measures are lagged by a month because the model implies a

relation between uncertainty and the expected dispersion of CAPM residuals (i.e., the alpha

dispersion) rather than the realized dispersion. A strong positive correlation emerges. Figure

A.1 in the appendix reports similar patterns for the dispersion of factors’ raw returns.

[ Insert Table 3 here.]

Table 3 reports the results of parametric tests. We consider two measures of dispersion,

the difference between max and min, and the cross-section standard deviation of factors’
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CAPM residuals. We forecast the dispersion with uncertainty measures (Panel A). In Panel

B and C, we control for the raw and detrended aggregate fund ownership (i.e., δ in data)

respectively, mapping the specifications more closely to Equation (31). Table A.2 in the

appendix reports the results for factor return dispersion.

Across specifications, measures of uncertainty positively predict the dispersion of fac-

tors’ CAPM residuals and returns. The economic magnitude is sizable. For example, an 1%

(one standard deviation) increase of UCSAt predicts a 0.46% (annualized to 5.52%) increase

of the cross-section standard deviation of factors’ CAPM residuals.

3.4 Factor Timing by Fund Managers

We test our modeling assumption that managers know the asset return distribution better

than investors. Here we also take a revealed-preference approach. As we have shown in

Section 3.3, the cross section of factor alphas and returns vary over time. If our assumption

holds in data, we should be able to observe that fund managers rebalance their portfolio

towards factors with superior distributional properties in the next period.

Specifically, we estimate the following predictive regression: for factor i at time t,

Ri,t,t+3 = α + β · INSTi,t + γ ·Xi,t + εi,t,t+3 (34)

where i = {HML,ACR,CMA,RMW,NI,MOM,STR,LTR,BAB, IV OL, TV OL}, and

Ri,t,t+3 is the return next quarter (i.e., month t to t+ 3), and Xi,t includes control variables

such as factor volatility that may also predict factor returns (Moreira and Muir (2017)). We

use the next-quarter return because institutional ownership data is available quarterly for

individual stocks. Note that INST at factor level varies every month due to the monthly

rebalancing of value-weighted factor portfolios. Therefore, our estimation is at monthly level

but with overlapping left-hand side variables. Our hypothesis is that a factor will deliver

higher return in the future if its manager ownership, INST , increases now.

[ Insert Table 4 here. ]

To increase statistical power, we pool factors together to a panel predictive regression.

In Table 4 Panel A, we report the results using pooled OLS and various fixed effects. RVi,t
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is the realized volatility of factor i estimated using previous 36 months of returns (Moreira

and Muir (2017)). Standard errors are double-clustered by factor and quarter.

As typical in the literature of return predictability, we address the concern over biased

standard errors due to overlapping observations. We follow the suggestion of Hodrick (1992)

and run the following “reverse” regression to test the return predictability:

3×Ri,t+1 = α + β

(
1

3

2∑
j=0

INSTi,t−j

)
+ γ ·Xi,t + εi,t+1. (35)

On the left-hand side is Ri,t+1m, the future one-month return multiplied by 3 so that it is

comparable in magnitude with quarterly returns. Results are reported in Table 4 Panel B.

Our modeling assumption is confirmed in all specifications. In both panels, the pre-

dictive coefficient of INST is positive and significant, robust to alternative standard errors

and various fixed effects. The coefficients in simple predictive regressions and the Hodrick

reverse regressions are very close. Moreover, the predictability is economically meaningful.

For example, the coefficient 0.31 in the first column of Panel B implies that, when INST

of a factor rises by one standard deviation, the return increases by 44 bps in the following

quarter (1.76% annualized). Given the average annual factor return of 3.31% in our sample,

this is a 53% increase over the average. The evidence of factor timing by fund managers lends

support to our assumption that managers possess superior knowledge of return distribution.

[ Insert Figure 4 here. ]

As a non-parametric test, we rank factors by their INST at the end of each quarter,

and form equal-weighted high (four factors), medium (three factors), and low (four factors)

portfolios. As shown in Panel A of Figure 4, high-INST factors consistently outperform

low-INST ones since 1991. The fact that this pattern started in the early 1990s suggests

that asset managers may have benefited from the exploding research efforts devoted to equity

factors, more data sources, and the developments of financial econometrics before the 1990s.

Another prediction of our model is that the asset-market equilibrium does not converge

to CAPM as the level of delegation rises. To examine this property, we plot the CAPM alpha

of the high-INST portfolio (left Y-axis) and the aggregate fund ownership (right Y-axis),

i.e. δ, in Panel B of Figure 4. While the latter has trended up in the recent decades, the

former also increased with occasional decline. Overall there is no evidence that a growing
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asset management sector is associated with declining alpha and convergence to CAPM.

[ Insert Table 5 here. ]

So far, we have examined the first moment of factor returns. In Table 5, we report

higher moments and other statistics of factor portfolio returns. High INST factors exhibit

high mean return, low volatility, and small skewness. These statistics vary monotonically in

INST , suggesting that asset managers tend to invest in factors with a desirable statistical

profile. Managers also tend to hold stocks with higher kurtosis. Under ambiguity, investors

refrain from factors with more extreme returns, while asset managers are more willing to

take on such exposure possibly due to their confidence in gauging the return distribution.

3.5 Model-Implied Uncertainty Measure

Due to the subjective nature of ambiguity, it is challenging to measure the uncertainty that

investors face when making delegation and asset-allocation decisions. Proposition 10 shows

how to extract ambiguity from assets’ CAPM alpha, investors’ expectations, and delegation.

Next we use a two-step procedure to estimate the model-implied uncertainty, υ.

First, given a 60-month window starting in month t, we run a panel regression of

factors’ excess returns on the market excess return and survey expectations: for factor i in

month s ∈ [t, t+ 59],

ri,s − rf,s = at + bi,t × (rM,s − rf,s) + ct × surveys−1 + εi,s, (36)

where rf,s is the risk-free rate and the coefficients’ subscript t marks the rolling window.

This regression is the empirical counterpart of Equation (31). However, the left-hand

side of Equation (31) is CAPM alpha, while that of the regression is realized factor return.

Therefore, we control for the market excess return and allow different factors to have different

betas, i.e., the whole CAPM component. Moreover, survey is lagged because in the model,

investors’ expectations are matched with ex ante alpha instead of ex post, realized CAPM

residuals. Finally, note that our survey data is on investors’ expectations of future market

return instead of individual factors’ returns, i.e.,
(
µr
Q
− rf1

)
. It is an imperfect proxy, but

readily available and one of the most widely used survey variables.
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Next, we use the time series of regression coefficient ĉt to back out investors’ model

uncertainty. In the model, ĉt combines both the level of delegation δ and the model uncer-

tainty υ. Therefore, we regress ĉt on the time-t aggregate fund ownership,δt, and take the

OLS residual as our model-implied measure of investors’ ambiguity, which we denote by υ̂t.

[ Insert Figure 5 here. ]

Figure 5 plots the time series of our estimated model uncertainty υ̂t, together with the

composite uncertainty measure (UPCA) extracted from a large set of macro and financial

variables by Jurado, Ludvigson, and Ng (2015), Economic Policy Uncertainty (EPU) of

Baker, Bloom, and Davis (2016), and CBOE stock market volatility index (V IX). The

estimated model uncertainty exhibits an economically meaningful dynamics, peaking around

major episodes of market turmoils such as the dotcom bubble and the financial crisis. It

carries information distinct from other uncertainty measures. Even though different measures

are not capturing the same object in theory, they are correlated. Specifically, our uncertainty

measure, υ̂t, has a correlation of 0.5 with UPCA.

4 Conclusion

A division of knowledge between managers and investors leads to delegation, but at the same

time, generates delegation uncertainty. We highlight the welfare gains from delegation that

resolve several puzzles on delegated portfolio management. Our theory also delivers asset

pricing implications supported by evidence. A key insight is that investors’ hedging against

delegation uncertainty creates CAPM alpha that is immune to the rise of arbitrage capital.

Delegation uncertainty arises wherever agents differ in their access to information.

While we focus on the application in financial markets, similar research questions can be

cast in other economic settings. For example, communication within an organization is

imperfect given the scarce attention (Dessein, Galeotti, and Santos (2016)). In such cases,

delegation uncertainty induces distortion in the resource allocation within an organization.

Ambiguity has attracted enormous attention in the macroeconomics literature (Bianchi,

Ilut, and Schneider (2018)). Informational specialization and delegation are ubiquitous, but

are often ignored in macroeconomic models. By showing that delegation significantly changes

the role of uncertainty in agents’ decision making, our work suggests that incorporating del-

egation can bring new insights on the macroeconomic consequences of model uncertainty.
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Appendix I: Quadratic Approximation

Define q as the Radon-Nikodym derivative of Q w.r.t. Q, i.e., q (ω) = dQ(ω)

dQ(ω)
for ω ∈ Ω. In the

following, we use Q and q interchangeably to denote a candidate probability model. Define

the following function corresponding to the certainty equivalent:

F
(
r,wo,wd

)
= C

(
rf + (r− rf1)T

[
(1− δ) wo + δwd (q)

])
Hence, F : B (Ω,R)×RN ×L∞ 7→ R is a functional defined on three Banach spaces, where

B (Ω,R) denotes the set of mappings from Ω to R.

Frechet derivatives of C. Here we list several useful expressions and definitions

• (υ−1 (·))′ = 1
υ′(υ−1(·)) and φ′ (·) = (υ ◦ u−1 (·))′ = υ′(u−1(·))

u′(u−1(·)) .

• (υ−1 (·))′′ = − 1
[υ′(υ−1(·))]2

υ′′(υ−1(·))
υ′(υ−1(·)) .

• φ′′ (·) = (υ ◦ u−1 (·))′′ = υ′(u−1(·))
[u′(u−1(·))]2

[
υ′′(u−1(·))
υ′(u−1(·)) −

u′′(u−1(·))
u′(u−1(·))

]
.

• Define γ = −u′′(rf)
u′(rf)

and θ = −u′ (rf )
φ′′(u(rf))
φ′(u(rf))

= −
[
υ′′(rf)
υ′(rf)

− u′′(rf)
u′(rf)

]
.

• DenoteDwoF
(
r,wo,wd

)
andDwdF

(
r,wo,wd

)
to be the first-order Fréchet derivatives

of C with respect to wo and wd, and D2
woF

(
r,wo,wd

)
and D2

wdF
(
r,wo,wd

)
to be

the second-order Fréchet derivatives of C with respect to wo and wd.

• Denote V
(
r,wo,wd

)
=
∫

∆
φ
(∫

Ω
u
(
rδ,wo,wd

)
dQ (ω)

)
dπ (q), so V (r,0,0) = φ (u (rf )).

• Denote U
(
r,wo,wd (q)

)
=
∫

Ω
u
(
rδ,wo,wd

)
dQ (ω), so U (r,0,0) = u (rf ).

• For any random variable R and probability measure P , µRP denotes the mean of R

under P , ΣR
P the covariance of R under P if R is vector and σ2

P (R) the variance under

P if R is scalor.

Derivatives w.r.t. wd. First, calculate the Fréchet derivatives of V
(
r,wo,wd

)
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DwdV
(
r,wo,wd

)
(δ)

=

∫
∆

φ′
(
U
(
r,wo,wd (q)

)) ∂U (r,wo,wd (q)
)

∂wd (q)
δ (q) dπ (q)

=

∫
∆

φ′
(
U
(
r,wo,wd (q)

)) ∫
Ω

u′
(
rδ,wo,wd

)
δ (r− rf1)T δ (q) dQ (ω) dπ (q)

which is a row vector, and

D2
wdV

(
r,wo,wd

)
(δ1, δ2)

=

∫
∆

φ′′
(
U
(
r,wo,wd (q)

))(∫
Ω

u′
(
rδ,wo,wd

)
δ (r− rf1)T δ2 (q) dQ (ω)

)
(∫

Ω

u′
(
rδ,wo,wd

)
δ (r− rf1)T δ1 (q) dQ (ω)

)
dπ (q) +

∫
∆

φ′
(
U
(
r,wo,wd (q)

))
∫

Ω

u′′
(
rδ,wo,wd

)
δ2δ1 (q)T (r− rf1) (r− rf1)T δ2 (q) dQ (ω) dπ (q)

which is a N -by-N matrix. Evaluate at
(
wo,wd

)
= 0 and δ = δ1 = δ1 = wd:

DwdV (r,0,0)
(
wd
)

= υ′ (rf ) δEπ

(
EQ

(
(r− rf1)T wd (q)

))
D2

wdV (r,0,0) = φ′′ (u (rf )) [u′ (rf )]
2
δ2Eπ

([
EQ

(
(r− rf1)T wd (q)

)]2
)

+

φ′ (u (rf ))u
′′ (rf )

(
δ2
)
Eπ

(
EQ

([
(r− rf1)T wd (q)

]2
))

By chain rule,

DwdF
(
r,wo,wd

)
(δ) =

DwdV
(
r,wo,wd

)
(δ)

υ′ (υ−1 (V (r,wo,wd)))

=

∫
∆

φ′
(
U
(
r,wo,wd (q)

))
υ′ (υ−1 (V (r,wo,wd)))

∫
Ω

u′
(
rδ,wo,wd

)
δ (r− rf1)T δ (q) dQ (ω) dπ (q)

D2
wdF

(
r,wo,wd

)
(δ1, δ2) = − υ

′′ (υ−1
(
V
(
r,wo,wd

)))
[υ′ (υ−1 (V (r,wo,wd)))]3

[
DwdV

(
r,wo,wd

)
(δ1)

]
[
DwdV

(
r,wo,wd

)
(δ2)

]
+
D2

wdV
(
r,wo,wd

)
(δ1, δ2)

υ′ (υ−1 (V (r,wo,wd)))
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Evaluate at
(
wo,wd

)
= 0 and δ = δ1 = δ1 = wd:

DwdF (r,0,0)
(
wd
)

= δEπ

(
EQ

(
(r− rf1)T wd (q)

))
D2

wdF (r,0,0)
(
wd,wd

)
= −θδ2V arπ

(
EQ

(
(r− rf1)T wd (q)

))
−

γδ2Eπ

(
σ2
Q

(
(r− rf1)T wd (q)

))
Derivatives w.r.t. wo. First, calculate the Fréchet derivatives of V

(
r,wo,wd

)
:

DwoV
(
r,wo,wd

)
(δ)

=

∫
∆

φ′
(
U
(
r,wo,wd (q)

)) ∂U (r,wo,wd (q)
)

∂wo
δdπ (q)

=

∫
∆

φ′
(
U
(
r,wo,wd (q)

)) ∫
Ω

u′
(
rδ,wo,wd

)
(1− δ) (r− rf1)T δdQ (ω) dπ (q)

which is a row vector, and

D2
woV

(
r,wo,wd

)
(δ1, δ2)

=

∫
∆

φ′′
(
U
(
r,wo,wd (q)

))(∫
Ω

u′
(
rδ,wo,wd

)
(1− δ) (r− rf1)T δ1dQ (ω)

)
(∫

Ω

u′
(
rδ,wo,wd

)
(1− δ) (r− rf1)T δ2dQ (ω)

)
dπ (q) +∫

∆

φ′
(
U
(
r,wo,wd (q)

)) ∫
Ω

u′′
(
rδ,wo,wd

)
(1− δ)2

δT1 (r− rf1) (r− rf1)T δ2dQ (ω) dπ (q)

which is a N -by-N matrix. Evaluate at
(
wo,wd

)
= 0 and δ = δ1 = δ2 = wo:

DwoV (r,0,0) (wo) = (1− δ) υ′ (rf )EQ
(

(r− rf1)T wo
)

D2
woV (r,0,0) (wo,wo) = φ′′ (u (rf )) [u′ (rf )]

2
(1− δ)2Eπ

([
EQ

(
(r− rf1)T wo

)]2
)

+φ′ (u (rf ))u
′′ (rf ) (1− δ)2EQ

([
(r− rf1)T wo

]2
)
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Then,

DwoF
(
r,wo,wd

)
(δ) =

DwoV
(
r,wo,wd

)
(δ)

υ′ (υ−1 (V (r,wo,wd)))

=
1

υ′ (υ−1 (V (r,wo,wd)))

∫
∆

φ′
(
U
(
r,wo,wd (q)

))
∫

Ω

u′
(
rδ,wo,wd

)
(1− δ) (r− rf1)T δdQ (ω) dπ (q)

and

D2
woF

(
r,wo,wd

)
(δ1, δ2)

= − υ
′′ (υ−1

(
V
(
r,wo,wd

)))
[υ′ (υ−1 (V (r,wo,wd)))]3

[
DwoV

(
r,wo,wd

)
(δ1)

] [
DwoV

(
r,wo,wd

)
(δ2)

]
+
D2

woV
(
r,wo,wd

)
(wo,wo)

υ′ (υ−1 (V (r,wo,wd)))

Evaluate at
(
wo,wd

)
= 0 and δ = δ1 = δ2 = wo:

DwoF (r,0,0) (wo) = (1− δ)
(
µr
Q
− rf1

)T
wo

D2
woF (r,0,0) (wo,wo) = −θ (1− δ)2 V arπ

(
EQ

(
(r− rf1)T wo

))
−

γ (1− δ)2 V arQ

(
(r− rf1)T wo

)
Second derivatives w.r.t. wd and wo. Finally,

D2
wowdF

(
r,wo,wd

)
(δ1, δ2)

=
DwowdV

(
r,wo,wd

)
(δ1, δ2)

υ′ (υ−1 (V (r,wo,wd)))
−
[
υ′′
(
υ−1

(
V
(
r,wo,wd

)))
/υ′
(
υ−1

(
V
(
r,wo,wd

)))]
[υ′ (υ−1 (V (r,wo,wd)))]2[

DwoV
(
r,wo,wd

)
(δ1)

] [
DwdV

(
r,wo,wd

)
(δ2)

]
Evaluate at

(
wo,wd

)
= 0 and δ1 = wo, δ2 = wd:

D2
wowdF (r,0,0)

(
wo,wd

)
=

DwowdV (r,0,0)
(
wo,wd

)
υ′ (rf )

− υ′′ (rf )

[υ′ (rf )]
3 [DwoV (r,0,0) (wo)]

[
DwdV (r,0,0)

(
wd
)]
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where

DwowdV (r,0,0)
(
wo,wd

)
= −υ′ (rf ) θ (1− δ) δ

∫
∆

wd (q)T EQ (r− rf1)EQ

(
(r− rf1)T

)
wodπ (q)

−υ′ (rf ) γ (1− δ) δ
∫

∆

woTEQ

(
(r− rf1) (r− rf1)T

)
wd (q) dπ (q)

Simplify the expression:

D2
wowdF (r,0,0)

(
wo,wd

)
=

DwowdV (r,0,0)
(
wo,wd

)
υ′ (rf )

− υ′′ (rf )

[υ′ (rf )]
3 [DwoV (r,0,0) (wo)]

[
DwdV (r,0,0)

(
wd
)]

= − (θ + γ) (1− δ) δcovπ
(
EQ

(
(r− rf1)T wo

)
, EQ

(
(r− rf1)T wd (q)

))
−γ (1− δ) δEπ

(
covQ

(
(r− rf1)T wo, (r− rf1)T wd (q)

))

Taylor expansion of C. By Theorem 8.16 of Jost (2005),

C
(
rf + (r− rf1)T

[
(1− δ) wo + δwd (q)

])
= F

(
r,wo,wd

)
= rf +DwoF (r,0,0) (wo) +DwdF (r,0,0)

(
wd
)

+
1

2
D2

woF (r,0,0) (wo,wo) +
1

2
D2

wdF (r,0,0)
(
wd,wd

)
+D2

wowdF (r,0,0)
(
wo,wd

)
+R

(
wo,wd

)
where DwdF (r,0,0), D2

wdF (r,0,0), DwoF (r,0,0), D2
woF (r,0,0), and D2

wowdF (r,0,0)

have been solved and lim(wo,wd)→0

R(wo,wd)
‖(wo,wd)‖2 = 0, where the denominator is the L2 norm.

To simplify the notations, let Rw denote the excess return generated by any portfolio w

and let Rw
P denotes the expected excess return of any portfolio w under probability measure

P . Also notice that wd (q) =
(
γΣr

Q

)−1 (
µr
Q − rf1

)
. We have:

Eπ

(
covQ

(
Rwo

, Rwd
))

= Eπ
(
woTΣr

Qwd (q)
)

=
1

γ

(
µr
Q
− rf1

)T
wo =

1

γ
Rwo

Q
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Taylor expansion can be simplified as

C
(
rf + (r− rf1)T

[
(1− δ) wo + δwd (q)

])
≈ rf + (1− δ)2Rwo

Q
+ δEπ

(
Rwd

Q

)
− (θ + γ) (1− δ) δcovπ

(
Rwo

Q , Rwd

Q

)
−(1− δ)2

2

(
γσ2

Q

(
Rwo)

+ θσ2
π

(
Rwo

Q

))
− δ2

2

(
γEπ

(
σ2
Q

(
Rwd

))
+ θσ2

π

(
Rwd

Q

))

Appendix II: Optimal Portfolio and Delegation

The investor’s problem is

max
wo,δ

C
(
rδ,wo,wd

)
− δψ

given that

wd (q) =
(
γΣr

Q

)−1 (
µr
Q − rf1

)
Approximate C

(
rδ,wo,wd

)
:

C
(
rf + (r− rf1)T

[
(1− δ) wo + δwd

])
≈ rf + (1− δ)2

(
µr
Q
− rf1

)T
wo − (θ + γ) (1− δ) δcovπ

(
µr
Q − rf1, Rwd

Q

)T
wo

−(1− δ)2

2

(
γwoTΣr

Q
wo + θwoTΣ

µrQ
π wo

)
+ δEπ

(
Rwd

Q

)
−δ

2

2

(
γEπ

(
σ2
Q

(
Rwd

))
+ θσ2

π

(
Rwd

Q

))
The first order condition of wo:

wo =
(
γΣr

Q
+ θΣ

µrQ
π

)−1
[(
µr
Q
− rf1

)
− (θ + γ)

δ

1− δ covπ
(
µr
Q, R

wd

Q

)]
From the first order condition of δ, δ equal to

γσ2
Q

(
Rwo)

+ θσ2
π

(
Rwo

Q

)
+ Eπ

(
Rwd

Q

)
− 2Rwo

Q
− (θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
− ψ

γσ2
Q

(Rwo) + θσ2
π

(
Rwo

Q

)
+ Eπ

(
Rwd

Q

)
+ θσ2

π

(
Rwd

Q

)
− 2Rwo

Q
− 2 (θ + γ) covπ

(
Rwo

Q , Rwd

Q

) ,
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where γσ2
Q

(
Rwo)

+ θσ2
π

(
Rwo

Q

)
can be simplified because

woT

[(
µr
Q
− rf1

)
− (θ + γ)

δ

1− δ covπ
(
µr
Q, R

wd

Q

)]
= Rwo

Q
− (θ + γ)

δ

1− δ covπ
(
Rwo

Q , Rwd

Q

)
So,

1− δ =
θσ2

π

(
Rwd

Q

)
− (θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
+ ψ

Eπ
(
Rwd

Q

)
+ θσ2

π

(
Rwd

Q

)
−Rwo

Q
−
(

2−δ
1−δ

)
(θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
Divide both sides by 1− δ and rearrange: δ is equal to

Eπ

(
Rwd

Q

)
−Rwo

Q
− (θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
− ψ

Eπ
(
Rwd

Q

)
+ θσ2

π

(
Rwd

Q

)
−Rwo

Q
− (θ + γ) covπ

(
Rwo

Q , Rwd

Q

)
Next, we substitute the investor’s optimal portfolio into δ to solve the optimal delega-

tion level as a function of exogenous parameters.

Corollary 3 (Optimal delegation) Proposition 12 and 3 jointly solve the investor’s op-

timal delegation level δ:

δ =
Eπ

(
Rwd

Q

)
− (θ + γ)B − C − ψ

Eπ
(
Rwd

Q

)
+ θσ2

π

(
Rwd

Q

)
− (θ + γ)2A− 2 (θ + γ)B − C

, (37)

where

A =covπ

(
µr
Q, R

wd

Q

)T (
γΣr

Q
+ θΣ

µrQ
π

)−1

covπ

(
µr
Q, R

wd

Q

)
, (38)

B =covπ

(
µr
Q, R

wd

Q

)T (
γΣr

Q
+ θΣ

µrQ
π

)−1 (
µr
Q
− rf1

)
, (39)

C =
(
µr
Q
− rf1

)T (
γΣr

Q
+ θΣ

µrQ
π

)−1 (
µr
Q
− rf1

)
. (40)

The solution in Equation (37) depends on the structure of the investor’s model uncer-

tainty that involves the cross-model mean and variance of expected delegation return and

the cross-model comovement of delegation return and asset returns.25 In Appendix IV, we

show how to calibrate our model with real data and calculate the model-implied delegation.

25To solve δ, we substitute the investor’s optimal portfolio into Equation (12), so the formula is solved
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Appendix III: Analysis under the Simplified Ambiguity

Optimal delegation and portfolio. First, we rewrite covπ

(
µr
Q, R

wd

Q

)
under the three

assumptions that simplify the structure of model uncertainty. The expected delegation return

under probability model Q is

Rwd

Q =
(
µr
Q − rf1

)T
wd (Q) =

1

γ

(
µr
Q − rf1

)T
(Σr

P )−1 (µr
Q − rf1

)
We can rewrite and decompose the cross-model covariance between the expected asset returns

and the expected delegation return as follows.

covπ

(
µr
Q, R

wd

Q

)
= covπ

(
µr
Q − µr

Q
, Rwd

Q

)
=

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q − µr

Q

)T
(Σr

P )−1
(
µr
Q − µr

Q

))
+

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q − µr

Q

)T
(Σr

P )−1
(
µr
Q
− rf1

))
+

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q
− rf1

)T
(Σr

P )−1 (µr
Q − rf1

))

To proceed, first, we recorgnize that
(
µr
Q − µr

Q

)T
(Σr

P )−1
(
µr
Q − µr

Q

)
is a linear combination

of
(
µri
Q − µri

Q

)(
µ
rj
Q − µ

rj

Q

)
weighted by the elements of (Σr

P )−1. Under the assumption that

π is Gaussian, we use Isserlis’ theorem to eliminate the first term. For any asset k,

covπ

(
µrk
Q − µrk

Q
,
(
µr
Q − µr

Q

)T
(Σr

P )−1
(
µr
Q − µr

Q

))
=
∑
i,j

(Σr
P )−1

(i,j)

(
Eπ

[(
µrk
Q − µrk

Q

)(
µri
Q − µri

Q

)(
µ
rj
Q − µ

rj

Q

)]
−Eπ

(
µrk
Q − µrk

Q

)
E
[(
µri
Q − µri

Q

)(
µ
rj
Q − µ

rj

Q

)])
= 0,

because first, Eπ

[(
µrk
Q − µrk

Q

)(
µri
Q − µri

Q

)(
µ
rj
Q − µ

rj

Q

)]
is the expectation of three zero-mean

normal random variables, and thus, is equal zero, and second, Eπ

(
µrk
Q − µrk

Q

)
= Eπ

(
µrk
Q

)
−

under the assumption of an interior solution, i.e., δ < 1. When δ = 1 and the investor does not retain any
wealth to manage on her own, the investor’s optimal portfolio given by Equation (13) is not well defined.
This explains why even if delegation is free (i.e., ψ = 0), Equation (37) does not give 100% delegation.
Intuitively, since the manager forms the efficient portfolio under each probability model, the investor with
quadratic utility should fully delegate when ψ = 0. Therefore, the complete solution of delegation should be
100% if ψ = 0, and the interior value given by Equation (37) if ψ > 0.
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µrk
Q

= µrk
Q
− µrk

Q
= 0.

Therefore, we have

covπ

(
µr
Q, R

wd

Q

)
=

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q − µr

Q

)T
(Σr

P )−1
(
µr
Q
− rf1

))
+

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q
− rf1

)T
(Σr

P )−1 (µr
Q − rf1

))
.

Using the fact that (Σr
P )−1

(
µr
Q
− rf1

)
is a constant vector, we can rewrite the first term as

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q − µr

Q

)T
(Σr

P )−1
(
µr
Q
− rf1

))
=

1

γ
covπ

(
µr
Q − µr

Q
,
(
µr
Q − µr

Q

))T
(Σr

P )−1
(
µr
Q
− rf1

)
=

1

γ

(
Σ
µrQ
π

)
(Σr

P )−1
(
µr
Q
− rf1

)
.

For the second term, we can replace
(
µr
Q − rf1

)
with

(
µr
Q − µr

Q

)
because both µr

Q
and rf1

are constant vectors, so this term is exactly the same as the first term. Therefore, we have

covπ

(
µr
Q, R

wd

Q

)
=

2

γ

(
Σ
µrQ
π

)
(Σr

P )−1
(
µr
Q
− rf1

)
Under the assumption that Σ

µrQ
π = υΣr

P ,

covπ

(
µr
Q, R

wd

Q

)
=

2

γ
(υΣr

P ) (Σr
P )−1

(
µr
Q
− rf1

)
=

2υ

γ

(
µr
Q
− rf1

)
,

and the investor’s portfolio is

wo =
(
γΣr

Q
+ θΣ

µrQ
π

)−1
[(
µr
Q
− rf1

)
− (θ + γ)

(
δ

1− δ

)
covπ

(
µr
Q, R

wd

Q

)]
= (Σr

P )−1
(
µr
Q
− rf1

)[( 1

γ + υθ

)
−
(
γ + θ

γ + υθ

)(
δ

1− δ

)
2υ

γ

]
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Using the simplified expression of covπ

(
µr
Q, R

wd

Q

)
and Σ

µrQ
π = υΣr

P , we have

A = covπ

(
µr
Q, R

wd

Q

)T (
γΣr

Q
+ θΣ

µrQ
π

)−1

covπ

(
µr
Q, R

wd

Q

)
=

(
γ

γ + υθ

)(
µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q
− rf1

) 4υ2

γ2
=

(
γ

γ + υθ

)
Rwd

Q

4υ2

γ2

B = covπ

(
µr
Q, R

wd

Q

)T (
γΣr

Q
+ θΣ

µrQ
π

)−1 (
µr
Q
− rf1

)
=

(
γ

γ + υθ

)
Rwd

Q

2υ

γ

C =
(
µr
Q
− rf1

)T (
γΣr

Q
+ θΣ

µrQ
π

)−1 (
µr
Q
− rf1

)
=

(
γ

γ + υθ

)
Rwd

Q

Next, we solve

Eπ

(
Rwd

Q

)
= Eπ

((
µr
Q − rf1

)T
(γΣr

P )−1 (µr
Q − rf1

))
= Eπ

((
µr
Q − µr

Q
+ µr

Q
− rf1

)T
(γΣr

P )−1
(
µr
Q − µr

Q
+ µr

Q
− rf1

))
= Eπ

((
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

))
+ Eπ

((
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q
− rf1

))
+

Eπ

((
µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q − µr

Q

))
+ Eπ

((
µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q
− rf1

))
,

where the second and third terms are zero because Eπ

(
µr
Q − µr

Q

)
= Eπ

(
µr
Q

)
− µr

Q
= 0.

The last term is the expected delegation return under the investor’s average model, Rwd

Q
=(

µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q
− rf1

)
. Therefore, we have

Eπ

(
Rwd

Q

)
= Eπ

((
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

))
+Rwd

Q

= tr

[
(γΣr

P )−1Eπ

((
µr
Q − µr

Q

)(
µr
Q − µr

Q

)T)]
+Rwd

Q

= tr
[
(γΣr

P )−1 (υΣr
P )
]

+Rwd

Q

=
υ

γ
N +Rwd

Q

Another way to solve Eπ

(
Rwd

Q

)
is to notice that under the assumption Σ

µrQ
π = υΣr

P ,(
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

)
= υ

γ

(
µr
Q − µr

Q

)T
(υΣr

P )−1
(
µr
Q − µr

Q

)
is a multiple of squared

normalized Gaussian variable that has a Chi-squared distribution with the degree of freedom
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equal to N and mean equal to υ
γ
N . Since Rwd

Q can be decomposed,

Rwd

Q =
(
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

)
+
(
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q
− rf1

)
+(

µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q − µr

Q

)
+
(
µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q
− rf1

)
,

=
(
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

)
+ 2

(
µr
Q
− rf1

)T
(γΣr

P )−1
(
µr
Q − µr

Q

)
+Rwd

Q
,

and the second term has zero mean, we have

Rwd

Q =
υ

γ
N +Rwd

Q
.

Similarly, to solve σ2
π

(
Rwd

Q

)
, we also use the decomposition of Rwd

Q . The first term has

a Chi-squared distribution, so its variance is

σ2
π

((
µr
Q − µr

Q

)T
(γΣr

P )−1
(
µr
Q − µr

Q

))
=
υ2

γ2
2N.

The second term is a linear transformation of normal variable
(
µr
Q − µr

Q

)
that has variance

equal to Σ
µrQ
π = υΣr

P , so the second term’s variance is

σ2
π

((
µr
Q − µr

Q

))
= 2

(
µr
Q
− rf1

)T
(γΣr

P )−1 υΣr
P (γΣr

P )−1
(
µr
Q
− rf1

)
2 = 4

υ

γ
Rwd

Q
.

The third term is a constant, the expected delegation return under the average model, so its’

variance is zero. To solve σ2
π

(
Rwd

Q

)
, we still need the covariance between the Chi-squared

first component of Rwd

Q and the Gaussian second component of Rwd

Q . First, we notice that

the first moment of their product is zero:

Eπ

((
µr
Q − µr

Q

)T
(γΣr

P )−1
(
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)
2
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))
= 2
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P )−1
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)(
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((
µr
Q − µr

Q

)T
(υΣr

P )−1
(
µr
Q − µr

Q

)(
µr
Q − µr

Q

))
,

which is equal to zero because by Isserlis’ theorem, the expectation of three zero-mean

multivariate normal variables is zero. Since the second component has zero mean, the product
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of its and the first term’s first moments is also zero. Therefore, the covariance between the

first and second components of Rwd

Q is zero. To sum up,

σ2
π

(
Rwd

Q

)
=
υ2

γ2
2N + 4

υ

γ
Rwd

Q
.

Substitute the solutions of A, B, C, Eπ

(
Rwd

Q

)
, and σ2

π

(
Rwd

Q

)
into the optimal δ, we

have

δ =
Eπ

(
R

wd(q)
Q

)
− (θ + γ)B − C − ψ

Eπ

(
R

wd(q)
Q

)
+ θσ2

π
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R

wd(q)
Q

)
− (θ + γ)2A− 2 (θ + γ)B − C

=

υ
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1− γ
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2
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− γ
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γ
+ 1
)2
]
Rwd

Q

Comparative statics. The optimal delegation level is given by

δ =

υ
γ
N − ψ +

[
1− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)]
Rwd

Q(
1 + 2 θυ

γ

)
υ
γ
N +

[
1 + 4 θυ

γ
− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)2
]
Rwd

Q

Under the three special conditions, we prove the following results of comparative statics.

First, we prove that ∂δ
∂N

> 0. Note that

1− δ =
2 θυ
γ
υ
γ
N + ψ +

[
4 θυ
γ
− 2υ(θ+γ)

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)]
Rwd

Q(
1 + 2 θυ
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υ
γ
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1 + 4 θυ

γ
− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
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,

so as N increases, 1 − δ declines because the coefficient of N is larger in the denominator,

and therefore, δ increases. Next, multiplying the numerator and denominator of δ by γ
υN

,

we have

δ =
1 + γ

υN

(
Rwd

Q
− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)
Rwd

Q
− ψ

)
(

1 + 2 θυ
γ
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+

γRwd

Q

υN

(
1 + 4 θυ

γ
− γ

γ+υθ

(
2υ(θ+γ)

γ
+ 1
)2
) ,

so when N is sufficiently large, what determines δ is
(

1 + 2 θυ
γ

)
in the denominator. There-

fore, we have ∂δ
∂υ
< 0, ∂δ

∂θ
< 0 and ∂δ

∂γ
> 0.
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Now we prove that given δ, ∂wo

∂θ
< 0, ∂wo

∂υ
< 0, and ∂wo

∂γ
< 0. The investor’s portfolio is

wo = (Σr
P )−1

(
µr
Q
− rf1

)[ 1

γ + υθ
− 2υ

(
γ + θ

γ + υθ

)
1

γ

(
δ

1− δ

)]
.

First, note that since υ < 1, γ+θ
γ+υθ

increases in θ, so ∂wo

∂θ
< 0. Moreover, since γ + δ > θ,

υ
(
γ+θ
γ+υθ

)
increases in υ, so ∂wo

∂υ
< 0. Finally, note that

(
γ+θ
γ+υθ

)
1
γ

= 1+θ/γ
1+υθ/γ

, decreasing in γ,

while 1
γ+υθ

also decreases in γ. Therefore, the effect of γ is ambiguous.

Appendix IV: Delegating under Model Uncertainty

The model solves the optimal delegation level δ. It can serve as a normative framework

to guide the choice of delegation for investors and institutions (e.g., pension funds). The

necessary inputs are the preference parameters, management fee, and the structure of model

uncertainty, which we show can be extracted from the Bayesian posterior of models of asset

returns. Next, we show the model-implied δ together with the delegation level in data.

We plot the optimal delegation δ under simulated ambiguity (more details later), and

the detrended empirical counterpart in Figure A.2. We detrend the fund ownership data

because the rise of fund ownership may be due to technological progress or the evolution of

stock market composition that are outside of our model. While the scales are different, the

model-implied and empirical δ are reasonably correlated. The correlations are 0.19 and 0.14

respectively with linearly detrended and HP-filtered empirical series.

Next, we lay out the details on how to calculate model-implied δ. What we require

is a set of candidate distributions and investors’ prior over these distributions (π). For

this reason, we specify a concrete set of return distributions generated from a latent-state

model, and use the Bayesian posterior as π. The output depends on this specific approach

to generate ∆ and π. This exercise only serves as an illustration of how the model produces

the optimal level of delegation by incorporating model uncertainty that an investor faces.

[ Insert Figure A.2 here. ]

Parameters and assets. The risk aversion γ is set to 2, and ambiguity aversion θ is set

to 8.864. Both are chosen by Ju and Miao (2012) to match the risk-free rate and the equity
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premium under smooth ambiguity averse preference. The management fee ψ is 1%, in line

with the asset management cost in the U.S. equity market (French (2008)). The risk-free

rate is the one-month Treasury-bill rate. Returns of risky assets are monthly returns of the

six size and book-to-market sorted portfolios from Kenneth French’s website.

Ambiguity Structure. The investor holds the belief that asset returns are drawn from

a normal distribution N (θ,Σr
t ) with constant mean θ and time-varing covariance matrix

Σrt .26 The covariance matrix is decomposed into a time-invariant idiosyncratic part Ω, and

a time-varing part BHtB
T , where B is a constant matrix and Ht is a K-dimension diagonal

matrix diag
(
{hk,t}Kk=1

)
whose elements follow log-AR(1) process with i.i.d. normal shocks:

log (hk,t) = αk + δk log (hk,t−1) + συkυk,t, υk,t ∼ i.i.d.N (0, 1) (41)

This is the dynamic factor model of multivariate stochastic volatility studied by Jacquier,

Polson, and Rossi (1999) and Aguilar and West (2000).

Therefore, each return model, N (θ,Σrt) ∈ ∆, is indexed by the values of parameters

(αk, δk, σ
υ
k) and latent states (hk,t). The uncertainty in these quantities spans the represen-

tative investor’s model space ∆. There are two sources of ambiguity in return distribution:

(1) parameter uncertainty; (2) latent state uncertainty. The first source declines over time

as data accumulate, while the second does not. The investor learns the parameters and

updates her belief over values of state variables over time, having in mind this structure of

ambiguity. We calculate the posterior probability distribution of N (θ,Σrt), and input the

posterior statistics in the closed-form solution of optimal delegation given by Equation (37).

In the implementation, we assume K = 1. Investors’ belief πt is updated from August

1983 to September 2012 (350 months). The previous 685 months (July 1926 to July 1983) is

used as a training set to form the initial prior π1 based on the smoothing algorithm (Gibbs

sampler). The learning problem is solved by “particle filter”, a recursive algorithm commonly

used to estimate non-linear latent factor models. Due to its complexity, we provide the details

on the estimation and calculation in a separate technical report available upon request.

26Among many studies, Bossaerts and Hillion (1999) compare a variety of stock return predictors and
conclude that even the best prediction models have no out-of-sample forecasting power. Pesaran and Tim-
mermann (1995) argue that predictability of stock returns is very low. Henriksson (1984) and Ferson and
Schadt (1996) among others show that most mutual funds are not successful return timers. Following these
studies, we assume constant expected return θ.
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Discussion: managers’ knowledge. In the theoretical model, fund managers know the

true probability distribution of returns. So, in the current setting, investors believe that

the fund managers know exactly the true N (θ,Σrt). In other words, at time t the fund

manager’s knowledge includes not only the parameters (θ, B, Ω and {(αk, δk, συk)}Kk=1) but

also the true value of latent states Ht.
27 The predictability of stock volatility has been shown

by Andersen, Bollerslev, Christoffersen, and Diebold (2006) among others. Studies, such as

Johannes, Korteweg, and Polson (2014) and Marquering and Verbeek (2004), demonstrate

that volatility timing can add value to investors’ portfolios. Busse (1999) shows that mutual

fund managers time conditional market return volatility, and Chen and Liang (2007) show

the same for hedge funds. Fund managers’ ability to know the true parameter values and

observe the volatilities is the extreme version of volatility timing. Investors’ learning of Ht

already exhibits a certain level of volatility timing, but investors assume that fund managers

can do even better thanks to better econometric models and access to more data sources.

27These are two extreme cases of knowledge. In the middle of the spectrum, for example, we may assume
that investors understand the model structure but do not know the parameter values and state values, while
fund managers know the model structure and parameter values but do not observe directly the state variable.
The key is that the fund managers face less model uncertainty than the investors do.
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Table 1 Summary Statistics

ACR HML BAB CMA IVOL LTR MOM NI RMW STR TVOL

Panel A: Factor returns (annualized)

count 447 447 447 447 447 447 447 447 447 447 447
mean 0.01 0.03 0.01 0.03 0.04 0.03 0.07 0.04 0.03 0.05 0.04
std 0.18 0.36 0.59 0.24 0.53 0.30 0.54 0.31 0.32 0.40 0.59
25% -0.10 -0.19 -0.29 -0.12 -0.23 -0.16 -0.13 -0.11 -0.09 -0.14 -0.27
50% 0.01 0.01 0.01 0.02 0.02 0.01 0.07 0.02 0.03 0.02 0.03
75% 0.11 0.22 0.37 0.17 0.30 0.19 0.34 0.17 0.17 0.23 0.33
ρ 0.21 0.15 0.04 0.13 0.12 0.18 0.07 0.14 0.10 -0.03 0.08

Panel B: Factor institutional ownership INST (%)

mean -0.31 -0.75 -2.61 -1.01 -1.43 -1.00 0.69 -0.78 -0.92 -0.19 -1.69
std 0.70 1.00 1.50 0.89 1.53 1.70 1.45 1.30 0.86 1.49 1.37
25% -0.73 -1.30 -3.26 -1.47 -2.37 -2.08 -0.09 -1.69 -1.46 -0.99 -2.60
50% -0.36 -0.66 -2.28 -0.84 -1.50 -0.58 0.66 -0.71 -0.86 -0.16 -1.68
75% -0.08 0.05 -1.54 -0.38 -0.75 0.09 1.55 -0.13 -0.43 0.69 -0.97
ρ 0.86 0.86 0.94 0.86 0.73 0.94 0.83 0.90 0.90 -0.04 0.64

Panel C: Factor individual ownership INDV (%)

mean 0.90 3.23 9.70 1.02 0.38 1.75 -2.08 -0.62 -1.23 1.29 1.35
std 1.90 2.98 3.90 2.15 3.95 4.32 4.25 3.66 2.30 4.52 3.69
25% -0.23 0.91 7.25 -0.57 -2.27 -1.19 -5.30 -3.48 -2.62 -1.84 -1.09
50% 0.90 3.18 10.04 1.51 0.17 1.34 -1.91 -0.85 -1.11 1.40 1.13
75% 2.04 5.50 12.49 2.67 2.84 4.39 1.02 2.39 0.41 4.68 3.46
ρ 0.91 0.95 0.95 0.91 0.75 0.94 0.82 0.94 0.94 -0.02 0.74

Panel D: Uncertainty measures and survey expectation

UCSA UPCA EPU EPUnews V IX V XO AA
count 384 384 387 387 327 375 357
mean 0.95 0.95 107.96 109.80 19.64 20.45 0.08
std 0.06 0.06 32.00 40.35 7.48 8.25 0.15
25% 0.92 0.92 84.42 82.32 13.85 14.30 -0.02
50% 0.94 0.94 100.74 99.78 17.83 18.60 0.09
75% 0.96 0.97 125.15 126.29 23.59 24.30 0.18
ρ 0.99 0.99 0.82 0.68 0.84 0.83 0.61

Note. This table shows the number of observations, mean, standard deviation, quintile values, and auto-
correlation coefficient (ρ) of monthly returns (Panel A), institutional ownership (Panel B), and individual
ownership (Panel C) for each factor. The construction of the long-short factors returns and institutional
ownership follows the Fama and French (1993) procedure and is described in details in the main text. Panel
D reports the summary statistics of the six uncertainty measures (details in the main text) and the survey
data on investors’ expectations.

56



Table 2 Factor Alphas by the Correlation between Individual Ownership and Uncertainty

Full-sample α Full-sample α|δ

H L L-H H L L-H

α̂ 0.08% 2.67% 2.59% 2.26% 5.18% 2.92%

t-value [0.13] [2.03] [2.57] [2.28] [2.75] [1.84]

Note. This table reports statistics of CAPM alphas of factors ranked by the full-sample correlations between
factor individual ownership, INDV , and uncertainty measure, UPCA, from Jurado, Ludvigson, and Ng
(2015). Portfolio “H” contains the equal-weighted 6 high correlations factors and portfolio “L” contains
equal-weighted 5 low correlations factors. Portfolio “L-H” longs L portfolio and shorts H portfolio. CAPM
alphas are the intercept of time-series regression of portfolio excess returns on the market excess returns.
Excess returns are defined as the difference between raw returns and the monthly risk-free rate. The left
panel reports full-sample CAPM α and the right panel reports α controlling for aggregate institutional
ownership, i.e., δ in the model. α estimates are annualized and t-statistics are reported in the brackets.
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Table 3 Uncertainty and the Future Dispersion of Factor CAPM Residuals

Dispersiont = εmax
i,t − εmin

i,t Dispersiont = σt(εi,t)

UCSA UPCA EPU EPUnews V IX V XO UCSA UPCA EPU EPUnews V IX V XO

Panel A: Dispersiont = γ0 + γ1Uncertaintyt−1 + εt

γ1 1.66*** 1.34*** 0.80*** 1.15*** 2.54*** 2.29*** 0.46*** 0.36*** 0.20** 0.31*** 0.73*** 0.66***
(6.43) (5.10) (3.06) (4.48) (9.51) (9.41) (5.90) (4.58) (2.51) (3.92) (8.88) (8.86)

N 385 385 386 386 326 374 385 385 386 386 326 374
R2 0.10 0.06 0.02 0.05 0.22 0.19 0.08 0.05 0.02 0.04 0.20 0.17

Panel B: Dispersiont = γ0 + γ1Uncertaintyt−1 + γ2δt−1 + εt

γ1 1.65*** 1.67*** 0.76*** 1.16*** 2.55*** 2.34*** 0.45*** 0.46*** 0.19** 0.31*** 0.73*** 0.67***
(6.39) (6.21) (2.88) (4.34) (9.44) (9.56) (5.85) (5.74) (2.32) (3.78) (8.80) (8.98)

γ2 0.12*** 0.21*** 0.05 0.02 0.01 0.09** 0.04*** 0.07*** 0.02 0.01 0.00 0.03**
(2.64) (4.41) (1.05) (0.57) (0.23) (2.19) (2.94) (4.55) (1.15) (0.69) (0.27) (2.14)

N 384 384 384 384 324 372 384 384 384 384 324 372
R2 0.11 0.11 0.03 0.05 0.22 0.20 0.10 0.10 0.02 0.04 0.19 0.18

Panel C: Dispersiont = γ0 + γ1Uncertaintyt−1 + γ2δ
detrend
t−1 + εt

γ1 2.08*** 1.49*** 0.80*** 1.20*** 2.56*** 2.31*** 0.58*** 0.40*** 0.20** 0.32*** 0.73*** 0.67***
(6.55) (4.79) (3.04) (4.61) (9.50) (9.46) (6.05) (4.31) (2.49) (4.06) (8.86) (8.89)

γ2 -0.46** -0.18 0.10 0.17 0.18 0.25 -0.13** -0.05 0.03 0.05 0.06 0.07
(-2.28) (-0.91) (0.56) (0.94) (1.03) (1.48) (-2.19) (-0.87) (0.62) (0.93) (1.04) (1.45)

N 384 384 384 384 324 372 384 384 384 384 324 372
R2 0.11 0.06 0.03 0.05 0.22 0.20 0.09 0.05 0.02 0.04 0.20 0.18

Note. This table reports the results of forecasting the cross-section dispersions of factor CAPM residuals using uncertainty measures in Panel A.
Panel B controls for the raw institutional ownership, δ; Panel C controls for the detrended institutional ownership, δdetrend. We measure dispersion
in two ways: (1) the cross-section difference between maximum and minimum (on the left); (2) the cross-sectional standard deviation (on the right).
The uncertainty measures include the cross-sectional average (UCSA) and first principal component (UPCA) of uncertainties estimated using a large
set of macro and financial variables from Jurado, Ludvigson, and Ng (2015); baseline Economic Policy Uncertainty (EPU) and news-based Economic
Policy Uncertainty (EPUnews) from Baker, Bloom, and Davis (2016); CBOE stock market volatility indexes V IX and V XO. For each specification,
the sample size is determined by the availability of the uncertainty measure and fund ownership. All uncertainty measures are normalized to have
mean of 0 and standard deviation of 1%. *,**, and *** indicate 10%, 5% and 1% statistical significance respectively.
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Table 4 Predicting Future Factor Returns with Fund Ownership

Panel A: panel regressions

R3m
i,t+1

(1) (2) (3) (4) (5) (6)

INST 0.27∗∗∗ 0.21∗∗ 0.27∗∗∗ 0.31∗∗∗ 0.22∗ 0.28∗∗

(0.10) (0.11) (0.10) (0.09) (0.10) (0.11)
RV 0.24 0.02 0.28

(0.22) (0.19) (0.30)
Constant 0.01∗∗∗ 0.00

(0.00) (0.01)
Quarter FE 3 3
Factor FE 3 3
Observations 4,884 4,884 4,884 4,513 4,513 4,513
Adjusted R2 0.00 0.22 0.00 0.01 0.22 0.01
Residual Std. Error 0.06 0.06 0.06 0.06 0.06 0.06

Panel B: Hodrick (1992) reverse predictive regressions

3×R1m
i,t+1

(1) (2) (3) (4) (5) (6)

1
3

∑2
j=0 INST

n
t−j 0.31∗∗∗ 0.28∗∗ 0.32∗∗ 0.36∗∗∗ 0.29∗∗∗ 0.34∗∗∗

(0.11) (0.11) (0.13) (0.11) (0.11) (0.13)
RV 0.26∗∗∗ 0.03 0.30∗∗∗

(0.08) (0.11) (0.10)
Constant 0.01∗∗∗ 0.00

(0.00) (0.00)
Quarter FE 3 3
Factor FE 3 3
Observations 4,884 4,884 4,884 4,535 4,535 4,535
Adjusted R2 0.00 0.06 0.00 0.00 0.06 0.00
Residual Std. Error 0.10 0.10 0.10 0.11 0.10 0.11

Note. This table shows predictive regressions of monthly long–short factor returns on lagged values of the
factor (relative) institutional ownership (INST ) controlling for other factor return predictors such as realized
volatility RV . Panel A reports estimations from pooled OLS and fixed effect panel regressions:

R3m
i,t+1 = α+ β · INSTi,t + γ ·Xi,t + εi,t+1

The left hand variable is monthly overlapping 3-month returns. Since ownership data is refreshed quarterly,
standard errors are double-clustered at quarter and factor levels. Panel B reports estimations using Hodrick
reverse predictive regressions

3×R1m
i,t+1 = α+ β

1

3

2∑
j=0

INSTn
i,t−j

+ γ ·Xi,t + εni,t+1

The left hand variable is monthly non-overlapping returns multiplied by a factor of 3 to be compared with
estimates from Panel A. The sample period is 198003:201612. Standard errors are in parentheses. *,**, and
*** indicate 10%, 5% and 1% statistical significance respectively.
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Table 5 Summary Statistics: Equal-weighted Portfolios of Factors by Fund Ownership

H M L H-L

Mean (ann.) 4.98% 2.68% 2.06% 2.91%
Vol (ann.) 6.16% 7.34% 11.38% 10.93%
Sharpe 0.81 0.36 0.18 0.27
Skewness -0.18 -0.71 -0.42 0.96
Kurtosis 13.03 10.12 4.85 7.56
Observations 444 444 444 444

Note. This table reports the annualized mean, volatility, Sharpe ratio, skewness, and kurtosis of the returns

of factor portfolios. We sort factors by their institutional ownership, INST , at the end of each quarter, and

form equal-weighted high (top four factors), medium (3 factors) and low (bottom four factors) portfolios.
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Figure 1 Rolling Factor Alphas by the Correlation between Individual Ownership and
Uncertainty

This figure plots 60-month rolling CAPM alphas of factors sorted by correlations between individual owner-

ship INDV and uncertainty measure UPCA from Jurado, Ludvigson, and Ng (2015). CAPM alphas are the

intercept of time-series regression of portfolio excess returns on the market excess returns. Excess returns

are defined as the difference between raw returns and the monthly risk-free rate. H portfolio contains the

equal-weighted 6 high correlations factors. L portfolio contains equal-weighted 5 low correlations factors.
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Figure 2 Factor Alphas and Correlations between Individual Ownership and Uncertainty

This figure plots the full-sample annualized alpha of each factor against the correlation between the factor’s

individual ownership, INDV , and uncertainty measure, UPCA from Jurado, Ludvigson, and Ng (2015).

Each dot represents one factor. Panel A and C plot raw CAPM alphas. Panel B and D plot CAPM alphas

controlling for aggregate institutional ownership δ. Panel C and D exclude the momentum factor, MOM .

CAPM alphas are the intercept of time-series regression of factor excess returns on the market excess returns.

Excess returns are defined as the difference between raw returns and the monthly risk-free rate.
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Figure 3 Uncertainty and the Future Dispersion of Factor CAPM Residuals

The dispersion is measured as the time t cross-sectional difference between maximum and minimum of factor’s

CAPM residuals. The correlation between an uncertainty measure and dispersion is shown top-right in each

panel. The uncertainty measures include the cross-sectional average (UCSA
t ) and first principal component

(UPCA
t ) of uncertainties estimated using a large set of macro and financial variables from Jurado, Ludvigson,

and Ng (2015); baseline Economic Policy Uncertainty (EPU) and news-based Economic Policy Uncertainty

(EPUnews) from Baker, Bloom, and Davis (2016); CBOE stock market volatility indexes V IX and V XO.
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A. 60-month rolling returns of sorted factor portfolios, equally weighted
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B. 60-month rolling alphas of factor portfolio H, equally weighted
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Figure 4 Rolling Average Returns and Alphas of Factors Sorted by Fund Ownership

This figure plots the annualized rolling average returns and alphas of factors sorted by fund ownership,

INST . Equal-weighted high (top four factors) and low (bottom four factors) portfolios are formed. Panel A

plots the 60-month moving average of H and L portfolios’ returns. Panel B plots the 60-month rolling-window

estimates of H portfolio’s CAPM alpha and the aggregate fund ownership, δ.
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Figure 5 Model-implied and Alternative Uncertainty Measures

This figure plots the model-implied uncertainty (left Y-axis) estimated using a two-step procedure (details

in the main text). Also shown are the other uncertainty measures (right Y-axis), including the first principal

component (UPCA
t ) of uncertainties estimated from a large set of macro and financial variables by Jurado,

Ludvigson, and Ng (2015), the Economic Policy Uncertainty (EPU) of Baker, Bloom, and Davis (2016), and

CBOE volatility index (V IX). The correlations between the model-implied and other uncertainty measures

are reported in the panel titles. The shaded areas areas mark the NBER recession periods.
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Table A.1 Factor Alphas by the Correlation between Individual Ownership and Uncertainty
(Alternative Measures)

Full-sample α Full-sample α|δ

H L L-H H L L-H

Panel A: Uncertainty = UCSA

α̂ -0.40% 3.26% 3.66% 1.91% 5.61% 3.70%

t-value [-0.58] [2.15] [2.52] [1.86] [2.58] [1.68]

Panel B: Uncertainty = EPU

α̂ 0.33% 2.37% 2.04% 2.51% 4.89% 2.38%

t-value [0.44] [1.83] [1.88] [2.27] [2.65] [1.42]

Panel C: Uncertainty = EPUnews

α̂ -0.01% 2.79% 2.80% 2.35% 5.08% 2.73%

t-value [-0.02] [2.06] [2.40] [2.28] [2.53] [1.44]

Panel D: Uncertainty = V IX

α̂ 0.24% 2.48% 2.24% 2.09% 5.39% 3.29%

t-value [0.35] [1.88] [2.19] [2.19] [2.77] [1.97]

Panel E: Uncertainty = V XO

α̂ 0.24% 2.48% 2.24% 2.09% 5.39% 3.29%

t-value [0.35] [1.88] [2.19] [2.19] [2.77] [1.97]

Note. This table reports statistics of CAPM alphas of factors ranked by the full-sample correlations between
factor individual ownership, INDV , and five alternative uncertainty measures introduced in Section 3.1.
Portfolio “H” contains the equal-weighted 6 high correlations factors and portfolio “L” contains equal-
weighted 5 low correlations factors. Portfolio “L-H” longs L portfolio and shorts H portfolio. CAPM alphas
are the intercept of time-series regression of portfolio excess returns on the market excess returns. Excess
returns are defined as the difference between raw returns and the monthly risk-free rate. The left panel
reports full-sample CAPM α and the right panel reports α controlling for aggregate institutional ownership,
i.e., δ in the model. α estimates are annualized and t-statistics are reported in the brackets.
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Table A.2 Uncertainty and the Future Dispersion of Factor Returns

Dispersiont = rmax
i,t − rmin

i,t Dispersiont = σt(ri,t)

UCSA UPCA EPU EPUnews V IX V XO UCSA UPCA EPU EPUnews V IX V XO

Panel A: Dispersiont = γ0 + γ1Uncertaintyt−1 + εt

γ1 1.76*** 1.34*** 1.10*** 1.56*** 3.21*** 2.94*** 0.55*** 0.40*** 0.32*** 0.47*** 1.01*** 0.92***
(6.12) (4.55) (3.80) (5.48) (11.11) (11.17) (6.10) (4.35) (3.49) (5.19) (11.09) (11.17)

N 385 385 386 386 326 374 385 385 386 386 326 374
R2 0.09 0.05 0.04 0.07 0.28 0.25 0.09 0.05 0.03 0.07 0.27 0.25

Panel B: Dispersiont = γ0 + γ1Uncertaintyt−1 + γ2δt−1 + εt

γ1 1.65*** 1.67*** 0.76*** 1.16*** 2.55*** 2.34*** 0.45*** 0.46*** 0.19** 0.31*** 0.73*** 0.67***
(6.39) (6.21) (2.88) (4.34) (9.44) (9.56) (5.85) (5.74) (2.32) (3.78) (8.80) (8.98)

γ2 0.12*** 0.21*** 0.05 0.02 0.01 0.09** 0.04*** 0.07*** 0.02 0.01 0.00 0.03**
(2.64) (4.41) (1.05) (0.57) (0.23) (2.19) (2.94) (4.55) (1.15) (0.69) (0.27) (2.14)

N 384 384 384 384 324 372 384 384 384 384 324 372
R2 0.11 0.11 0.03 0.05 0.22 0.20 0.10 0.10 0.02 0.04 0.19 0.18

Panel C: Dispersiont = γ0 + γ1Uncertaintyt−1 + γ2δ
detrend
t−1 + εt

γ1 2.08*** 1.49*** 0.80*** 1.20*** 2.56*** 2.31*** 0.58*** 0.40*** 0.20** 0.32*** 0.73*** 0.67***
(6.55) (4.79) (3.04) (4.61) (9.50) (9.46) (6.05) (4.31) (2.49) (4.06) (8.86) (8.89)

γ2 -0.46** -0.18 0.10 0.17 0.18 0.25 -0.13** -0.05 0.03 0.05 0.06 0.07
(-2.28) (-0.91) (0.56) (0.94) (1.03) (1.48) (-2.19) (-0.87) (0.62) (0.93) (1.04) (1.45)

N 384 384 384 384 324 372 384 384 384 384 324 372
R2 0.11 0.06 0.03 0.05 0.22 0.20 0.09 0.05 0.02 0.04 0.20 0.18

Note. This table reports the results of forecasting the cross-section dispersions of factor returns using uncertainty measures in Panel A. Panel B controls
for the raw institutional ownership, δ; Panel C controls for the detrended institutional ownership, δdetrend. We measure dispersion in two ways: (1)
the cross-section difference between maximum and minimum (on the left); (2) the cross-section standard deviation. The uncertainty measures include
the cross-sectional average (UCSA) and first principal component (UPCA) of uncertainties estimated using a large set of macro and financial variables
from Jurado, Ludvigson, and Ng (2015); baseline Economic Policy Uncertainty (EPU) and news-based Economic Policy Uncertainty (EPUnews)
from Baker, Bloom, and Davis (2016); CBOE stock market volatility indexes V IX and V XO. For each specification, the sample size is determined
by the availability of the uncertainty measure and fund ownership. All uncertainty measures are normalized to have mean of 0 and standard deviation
of 1%. *,**, and *** indicate 10%, 5% and 1% statistical significance respectively.
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Figure A.1 Uncertainty and the Future Dispersion of Factor Returns

The dispersion is measured as the time t cross-sectional difference between maximum and minimum of factor’s

returns. The correlation between each uncertainty measure and dispersion is shown top-right in each panel.

The uncertainty measures include the cross-sectional average (UCSA
t ) and first principal component (UPCA

t )

of uncertainties estimated using a large set of macro and financial variables from Jurado, Ludvigson, and

Ng (2015); baseline Economic Policy Uncertainty (EPU) and news-based Economic Policy Uncertainty

(EPUnews) from Baker, Bloom, and Davis (2016); CBOE stock market volatility indexes V IX and V XO.
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Figure A.2 The Model-implied Optimal Delegation and the Detrended Delegation in Data
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