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Abstract

Delegation bears an intrinsic form of uncertainty. Investors hire asset managers
for their superior information, but delegation outcome is uncertain precisely because
managers’ information is unknown to investors. We model investors’ delegation decision
as a trade-off between asset return uncertainty and delegation uncertainty. Our theory
explains several puzzles on fund performances. It also delivers asset pricing implications
supported by our empirical analysis: (1) because investors partially delegate and hedge
against delegation uncertainty, CAPM alpha arises; (2) the cross-section dispersion of
alpha increases in uncertainty; (3) managers bet on alpha, engaging in factor timing,
but factors’ alpha is immune to the rise of their arbitrage capital — when investors
delegate more, delegation hedging becomes stronger. Finally, we offer a novel approach

to extract uncertainty from asset returns, delegation, and survey expectations.
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1 Introduction

Technological progress is often accompanied by a division of labor. In the era of big data,
a division of knowledge emerges and induces delegation: we hire data experts for tasks that
require skills in data collection and analysis.! However, delegation carries an intrinsic form
of uncertainty, even in the absence of moral hazard. The delegation outcome depends on the
experts’ information that is unknown to us. This paper studies the implications of delegation
uncertainty on delegated portfolio management and asset pricing.

The asset management industry is being revolutionized by exploding data sources and
increasingly sophisticated techniques that help money managers better estimate the prob-
ability distribution of asset returns. In contrast, investors face difficulties in gauging prob-
abilities. We model two types of agents: managers who know the return distribution, and
investors who face model uncertainty (ambiguity) given by a set of probability distributions
(“models”). Investors pay managers to allocate part of their wealth, and allocate the re-
tained wealth under ambiguity.? We abstract away from moral hazard, which is studied by
Miao and Rivera (2016) in a similar setup of heterogeneous belief. In this paper, managers
use their probability knowledge to allocate the delegated wealth on the efficient frontier.

Delegation improves investors’ welfare by reducing their exposure to ambiguity in the
returns of individual assets. As in Gennaioli, Shleifer, and Vishny (2015), such welfare view
resolves important puzzles in the asset management literature. For example, we characterize
conditions under which delegation happens even when managers underperform the market
or deliver zero alpha by holding portfolios proportional to the market.

However, delegation uncertainty remains — even though managers deliver the efficient
portfolio, the efficient frontier varies across probability models. Investors incorporate such
uncertainty in their delegation decision and hedge delegation uncertainty when allocating the
retained wealth. Their portfolio tilts towards assets whose returns move against the frontier
across models. Delegation hedging generates CAPM alpha, and the cross-section dispersion
of alpha increases in investors’ model uncertainty. Moreover, the alpha of delegation-hedging
assets is immune to the rise of arbitrage capital, i.e., the wealth allocated by managers, be-

cause when investors delegate more, their hedging against delegation uncertainty is stronger.

IThe “division of knowledge” is a term borrowed from Hayek (1945) who describes the importance of price
system in sustaining the economic order in a world with a division of labor and “equally divided knowledge”.

2The management fee may represent the managers’ effort costs, agency cost, search and screening costs,
relative bargaining power, or other types of inefficiencies not modeled in the paper.



In our model, professional asset managers and investors are different in their knowledge
of return distribution. To highlight such division of knowledge, we assume that investors do
not learn the probability distribution by observing managers’ allocation in asset markets,
and that managers cannot inform investors of the true return distribution.?

We provide closed-form solutions for investors’ delegation and the cross section of ex-
pected asset returns by solving a quadratic approximation of investors’ utility under ambigu-
ity.* As a technical contribution, our approximation extends that of Maccheroni, Marinacci,
and Ruffino (2013) into functional spaces. When delegation is unavailable, and investors
are ambiguity-neutral, our approximation becomes the classic Arrow-Pratt approximation,
which generates the mean-variance portfolio of Markowitz (1959) and a CAPM equilibrium.

In our setup, delegation offers investors model-contingent allocation of wealth. Asset
managers can be viewed as portfolio formation machines with the knowledge of true return
distribution as input and the corresponding efficient portfolio as output. In investors’ mind,
the overall structure of uncertainty is a two-step lottery: first, a probability model is drawn
and observed by managers who allocate the delegated wealth on the efficient frontier; second,
a state of the world is drawn according to the probability model. Therefore, the delegation
portfolio is model-contingent, and the delegation return is both state- and model-contingent.

Delegation improves investors’ welfare by offering access to efficient allocation under
each probability model — whichever model is true, managers know it and allocate efficiently.
However, delegation does not eliminate ambiguity. It transforms ambiguity from the returns
of individual assets to that of the efficient frontier. Investors’ optimal delegation depends on
the trade-off between the welfare gains from such transformation and the management fees.’

This new perspective on delegation explains the puzzling findings that investors dele-
gate in spite of unconvincing performances of managers. Investors cannot evaluate perfor-
mances under rational expectation, so econometricians’ performance measurements are based

on an information set different from investors’. How delegation improves welfare depends on

3Learning under model uncertainty (ambiguity) has been studied by Epstein and Schneider (2007), and
in the asset pricing literature, Leippold, Trojani, and Vanini (2008), Ju and Miao (2012) and Choi (2016).
Mele and Sangiorgi (2015) study agents’ information acquisition under Knightian uncertainty. Péstor and
Stambaugh (2012) study how investors’ Bayesian learning affects their delegation decision.

4We assume smooth ambiguity aversion utility function proposed by Klibanoff, Marinacci, and Mukerji
(2005) and Nau (2006) and discussed by Epstein (2010) and Klibanoff, Marinacci, and Mukerji (2012).
Ghirardato, Maccheroni, and Marinacci (2004) take an axiomatic approach to study the separation between
ambiguity and agents’ attitude towards ambiguity.

5 Appendix IV illustrates how our framework can be used as a normative model to guide the delegation
choice of investors under model uncertainty.



the structure of model uncertainty. We characterize conditions under which delegation arises
even if managers underperform the market, deliver negative alpha after fees, or simply hold
portfolios proportional to the market portfolio (Fama and French (2010); Lewellen (2011)).
Our focus on subjective welfare echoes that of Gennaioli, Shleifer, and Vishny (2015).

Investors are averse to the cross-model comovement between asset returns and the
delegation (i.e., frontier) return. They hedge against delegation uncertainty, which induces a
two-factor structure in the expected asset returns: a standard CAPM market risk premium,
and a model uncertainty premium (“alpha”) that increases in the level of delegation and
model uncertainty. Specifically, investors favor assets whose returns move against that of
the frontier across probability models. Such assets have low (or negative) alpha. Investors
avoid assets whose returns comove with that of the frontier. Such assets have high alpha.

One would expect assets’ alpha to converge to zero if the economy approaches full del-
egation (e.g., driven by declining management fees), because managers with mean-variance
portfolios almost dominate the asset markets. However, this is not the case. The more in-
vestors delegate, the stronger they hedge against delegation uncertainty per dollar of retained
wealth. The increasing hedging motive counter-balances the decreasing share of wealth man-
aged by investors themselves, which sustains the CAPM alpha. Therefore, our model sheds
light on why certain investment strategies still deliver alpha in spite of the growing arbitrage
capital, i.e., the money managed by professionals who know those “anomalies”.

Our model delivers other asset pricing implications. The market risk premium declines
in the level of delegation, which suggests that as the asset management sector grows, the
security market line will be increasingly flat. Following Bewley (2011), we simplify investors’
model uncertainty by relating it to the statistical errors in parameter estimation. The overall
level of ambiguity and investors’ sentiment, which is directly mapped to survey expectations,
emerge as the key determinants of the cross-section variation of asset returns.® This simplified
setup is later used to extract ambiguity from asset returns, delegation, and survey data.

We test the model assumptions and asset pricing implications using the U.S. equity
factors that are well studied in the literature of empirical asset pricing. We use factors rather

than individual stocks because a parsimonious factor structure largely spans stock returns.”

60Our model does not feature limits to arbitrage, but due to delegation uncertainty, investors’ sentiment
survives in the expected asset returns even if the level of wealth professionally managed approaches 100%.

"Among a large set of firm characteristics that have been proposed to predict returns in the cross section,
Hou, Xue, and Zhang (2015) show that a four-factor model summarizes the cross section of average returns,
Freyberger, Neuhierl, and Weber (2017) identify a small subset that provide distinct information, and Kozak,



The main prediction of the model is that assets deliver smaller CAPM alphas if they
are viewed by investors as insurance against delegation uncertainty. Measuring investors’
subjective belief is challenging, so we take a revealed-preference approach. Following an
increase of model uncertainty, investors overweigh delegation-hedging assets. Therefore,
we calculate the correlation between a factor’s individual-investor ownership and measures
of uncertainty. High-correlation assets are revealed by investors’ choice as the delegation-
hedging assets, and consistent with the model’s prediction, they have smaller CAPM alpha.

Next, we characterize how the cross section of factors’ CAPM alphas and returns
vary over time. Our model predicts that the cross-section dispersion increases in periods of
higher uncertainty because investors engage in stronger delegation hedging. We find a strong
correlation between the alpha (and return) dispersion and various uncertainty measures.

The key assumption of our model is that managers have superior knowledge of return
distribution. Since the cross section of factors vary over time, we should observe managers
tilting portfolios towards factors with desirable distributional properties. We sort factors by
their institutional ownership (INST), and find those with high INST outperform those with
low INST. Parametric tests confirm this finding: one standard-deviation increase of INST
adds 1.76% (annualized) to a factor’s future return, which is a 53% increase over the average
return in our sample. Moreover, factors with high-INST factors also have high Sharpe ratios.

Finally, we calculate investors’ model uncertainty by fitting the equilibrium conditions
of asset markets directly to the data of factor returns, delegation, and survey of investors’
expectations (Greenwood and Shleifer (2014)). The model-implied uncertainty exhibits cycli-
cal dynamics and peaks around market turmoils, such as the dot-com bubble and the Great
Recession. Our measure contains information distinct from alternative uncertainty measures

in the literature, but exhibits comovement. The correlation ranges from 0.11 to 0.51.

Literature. Our paper furthers the studies on ambiguity, i.e., the lack of knowledge of prob-
ability distribution (Knight (1921)). Ellsberg paradox is an example of ambiguity aversion.®
Widely cited as a challenge to the expected utility theory (e.g., Dow and Werlang (1992)),
ambiguity aversion has been introduced in various fields in economics, such as asset pricing
(e.g., Boyarchenko (2012), Cao, Wang, and Zhang (2005), Chen and Epstein (2002), Epstein

and Wang (1994), Garlappi, Uppal, and Wang (2007), Horvath (2016), Maenhout (2004),

Nagel, and Santosh (2017) find the principal components approximate the stochastic discount factor well.
8 A version of it was noted by John Maynard Keynes in his book ” A Treatise on Probability” (1921).
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Illeditsch (2011), Ilut (2012), Ju and Miao (2012)), real option (Miao and Wang (2011)),
corporate governance (Izhakian and Yermack (2017)), market microstructure (Condie and
Ganguli (2011); Easley and O’Hara (2010); Ozsoylev and Werner (2011); Vitale (2018)),
and policy intervention in crises (Caballero and Krishnamurthy (2008)). Epstein (2010),
Guidolin and Rinaldi (2010), and Hansen and Sargent (2016) review the literature.

Our setup is a special case of the multi-agent environments discussed by Hansen and
Sargent (2012). Here one type of agents (investors) face ambiguity while the other (managers)
do not. Closely related, Miao and Rivera (2016) study the corporate finance implications of
optimal contracting between a principal, who faces ambiguity, and an agent, who knows the
probability. We differ by abstracting away moral hazard and focusing instead on the asset
pricing implications of delegation uncertainty that is intrinsic to the division of knowledge.
The incentive problems in delegation under ambiguity are also studied by Fabretti, Herzel,
and Pmar (2014) and Rantakari (2008). Hirshleifer, Huang, and Teoh (2017) study whether
investors’ market participation can be improved by introducing funds whose allocation is
contingent upon ambiguous asset supply. We differ by emphasizing investors’ hedging against
delegation uncertainty, and its implications on the cross-section variation of asset returns.

Our results are purely driven by the belief heterogeneity between investors and man-
agers. Managers are endowed with informational advantage, and unlike Bhattacharya and
Pfleiderer (1985), investors know managers’ ability. In the recent literature, Garleanu and
Pedersen (2018), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), Huang (2016),
Sockin and Zhang (2018) study fund managers’ information acquisition. Péstor and Stam-
baugh (2012) model investors’ learning of the value-added from delegation. We also abstract
away incentive problems of fund managers, which has been studied in a large literature (e.g.,
Basak and Pavlova (2013), Binsbergen, Brandt, and Koijen (2008), Buffa, Vayanos, and
Woolley (2014), Chevalier and Ellison (1999), Cuoco and Kaniel (2011), Dow and Gorton
(1997), Guerrieri and Kondor (2012), He and Xiong (2013), Heinkel and Stoughton (1994),
Kaniel and Kondor (2013), Leung (2014), Starks (1987), Ou-Yang (2003)). Moreover, our
results do not rely on fund flow dynamics (Berk and Green (2004)) or the heterogeneity in
fund characteristics (Péstor, Stambaugh, and Taylor (2017)).

While the economic mechanism is simple, our model helps understand a variety of
puzzling findings. Since Jensen (1968), a large literature has documented that asset man-

agers fail to beat passive benchmarks or deliver “alpha” (e.g., Barras, Scaillet, and Wermers



(2010), Carhart (1997), Del Guercio and Reuter (2014), Fama and French (2010), Gruber
(1996), Malkiel (1995), Wermers (2000)). Specifically, Fama and French (2010) find that the
aggregate portfolio of actively managed U.S. equity funds is close to the market portfolio (see
also Lewellen (2011)), and few funds produce sufficient benchmark-adjusted returns to cover
their costs. Nevertheless, the asset management sector has been growing dramatically. Fol-
lowing Gennaioli, Shleifer, and Vishny (2015), we propose an alternative perspective based
on subjective welfare, and characterize the conditions under which managers underperform
the market, deliver negative alpha after fees, and hold portfolios proportional to market.

This paper contributes to the asset pricing literature by characterizing a hedging de-
mand that arises from the heterogeneity of probability knowledge. Ambiguity hedging is also
emphasized by Drechsler (2013), who show that investors pay a premium for index options to
hedge model misspecification. Moreover, we decompose assets’ expected returns into risk and
ambiguity premia, with the prices of risk and ambiguity dependent on the endogenous level
of delegation. The ambiguity premium is positive even if investors are not ambiguity-averse,
which is in stark contrast to the existing literature (e.g., Brenner and Izhakian (2017), Ep-
stein and Schneider (2008), Kogan and Wang (2003), Trojani and Vanini (2004), Ui (2011)).
Through delegation, investors’ return on wealth is both state- and model-contingent, so even
ambiguity-neutral investors cannot average out model uncertainty for each state of the world,
acting as expected-utility agents. They have to deal with the joint uncertainty in both the
state and model space. We are the first to show that delegation arises from ambiguity, and
at the same time, fundamentally changes its role in agents’ decision making.”

On the empirical side, we find that the cross section of factors’ returns and CAPM
alphas is partly spanned delegation uncertainty, and that its dispersion varies with the
level of uncertainty. Moreover, we provide new evidence on factor timing (Cohen, Polk, and
Vuolteenaho (2003); Moreira and Muir (2017)). Related to our revealed-preference approach,
Greenwood and Hanson (2012) use firms’ equity issuance decisions to time factors, assum-
ing that firm managers have superior information. Finally, our paper offers new evidence
on the relationship between institutional ownership and factor premia. Nagel (2005) find
the unconditional factor premia are most pronounced among stocks with low institutional

ownership. We find that the conditional factor premia increase in institutional ownership.

9We show that delegation transforms the ambiguity on individual assets to that on the efficient frontier,
and its implications on asset pricing. Uppal and Wang (2003) emphasize different types of ambiguity (the
overall ambiguity and that on a subset of assets) and study the implications on under-diversification.



Finally, we use the model’s asset-market equilibrium conditions to back out ambiguity
from investor survey. Our approach is related to Bhandari, Borovicka, and Ho (2016) who
use macroeconomic models to extract ambiguity shocks from survey data on households’
expectations about inflation and unemployment. Based on the theory of Izhakian (2014),

Brenner and Izhakian (2017) extract investors’ ambiguity from intraday data of stock prices.

2 Model

2.1 The Setup

The economy has N risky assets, a risk-free asset with return r;, and a unit mass of repre-
sentative investors. Each investor is matched with a fund manager. Agents make decisions
at date 0. Asset returns are realized at date 1. The vector of asset returns, r = {ri}ij\il, is a
mapping from Q, the set of states of the world at date 1, to real numbers, r : Q — RV,
Endowed with one unit of wealth, an investor chooses ¢, the fraction of wealth invested
in the fund, and allocates the retained wealth 1 — § according to w°, a column vector of
portfolio weights on the N risky assets (superscript “o” for the investor’s “own” portfolio).

The penniless fund manager chooses w?, the delegation portfolio.

Information and preference. The investor makes decisions under ambiguity (model un-
certainty). A non-singleton set, A, contains candidate probability distributions of r (“mod-
els”). For @ € A, the investor assigns a prior 7 (@) of ) being the true model.

The investor’s preference is represented by the smooth ambiguity-averse utility func-
tion in Klibanoff, Marinacci, and Mukerji (2005). It separates ambiguity from the attitude
toward ambiguity, which is important for our analysis.!® The utility is defined over the
investor’s terminal wealth, r; o wa, Whose subscripts show the dependence on delegation 4,

the investor’s own portfolio w°, and the delegation portfolio w?. The utility is

V(riwens) = [0 [ i) d0)) dr (@ 1)

¢ () and w (-) are strictly increasing functions and twice continuously differentiable. The

concavities of u (+) and ¢ (-) capture risk and ambiguity aversion respectively.

WEpstein (2010) and Klibanoff, Marinacci, and Mukerji (2012) discuss the experimental evidence.



The fund manager knows the true model, denoted by P, and acts as a portfolio for-
mation machine that delivers the corresponding efficient portfolio, w? (P). We will specify
w? (P) after introducing the quadratic approximation of investor utility. To access this “ma-
chine”, the investor pays a proportional management fee ¢).*! While existing models typically
assume that managers have better information on the first moment by obtaining return sig-
nals, here managers’ skill is in a general form of distribution knowledge. Busse (1999) finds
volatility-timing by mutual funds (see Chen and Liang (2007) for hedge funds).'? Jondeau
and Rockinger (2012) calculate the welfare improvements from general distribution timing.

We provide our own evidence on managers’ distribution knowledge in Section 3.

Delegation as model-contingent allocation. From the investor’s perspective, for any
Q@ € A, if it is the true model, the manager knows it and constructs the corresponding efficient

portfolio, w¢ (Q). Therefore, delegation makes the investor’s wealth model-contingent:

Tswowd = (1—0) |:7"f + (r — rfl)T w"] +0 |:Tf + (r — rfl)T w (Q)]
= i+ (e —r )" [1-8)we +owl(Q)], Q € A. (2)

The investor’s own portfolio is a N-dimensional vector, w® € RY. In contrast, the delegation

4 is a mapping from the model space to real numbers, r : A — RY. Through

portfolio, w
delegation, the return on wealth becomes a mapping from the state and model spaces to
real numbers, 75 o wa : €2 X A = R. Without delegation (i.e., 6 = 0), the return is given by
T+ (r— rfl)T w?, which is just a mapping from the state space, 2, to R.

As in Segal (1990), let us consider an imaginary economy with two stages: (1) the in-
vestor chooses 0 and w°; (2) the probability model is drawn and known by the manager who
allocates the delegated wealth. Therefore, delegation allows investors to achieve efficient al-
locations under each possible model. However, delegation uncertainty remains — the efficient
portfolio, w? (Q), varies across probability models. The manager cannot inform the investor

which model is true; otherwise, the delegation uncertainty disappears. This captures the

realistic obstacles in the communication between managers and investors.

HTn richer settings, @ can be determined by the competition among managers, the competition among
investors, managers’ costs of effort and information acquisition, investors’ search costs, agency cost, etc.
2Ferson and Mo (2016) propose to measure to evaluate managers by both market and volatility timing.



2.2 Quadratic Approximation

To solve the investor’s delegation and portfolio allocation in closed forms, we approximate
the utility function in a quadratic fashion by extending the results of Maccheroni, Marinacci,
and Ruffino (2013, MMR) into functional spaces. MMR does not allow agents’ wealth to be

model-contingent. We adopt their technical regularity conditions.

Definition 1 A representative investor’s certainty equivalent is defined by

Clramesnt) =7 ([0 [ 0lrmem 1)) tn(@). )

where v is a composite function v = ¢ o u.

The investor’s delegation and portfolio problem is given by

m%{ {C’ (T(;’Wo’wd) — 1/15} (4)

w

where 75 o wa is the return on wealth (Equation (2)) and ¢ is the asset management fee.
We define two parameters, risk aversion and ambiguity aversion, respectively in a small

neighborhood of the return on wealth around the risk-free rate ry.

Definition 2 At risk free return ry, the local absolute risk aversion v is defined as

and marginal-utility-adjusted, local ambiguity aversion 6 is defined as

0 = —u'(ry)

& (u(ry)) o

¢ (u(ry))

To present the quadratic approximation of investor utility, we introduce several no-
tations. We denote the excess return of a portfolio, w, by RY = (r — 'rfl)T w, and its
expectation under @) € A, by RY = Eg [(r — rfl)Tw . For a random variable X and given
Q € A, let Eg(X) and 07 (X) denote the expectation and variance respectively if X is
a scalar, and ug and Eg denote the expectation vector and the covariance matrix respec-

tively if X is a vector. Given ) € A, the covariance of two random variables, X and Y, is



covg (X,Y). We define the investor’s average model under the prior, ,

Q(A) = Q (A)dr (Q), for any A C Q. (7)
QeA

Following MMR, we approximate the certainty equivalent using the Taylor expansion in
the space of portfolio weights. Since the delegation portfolio weights, w? (Q), are functionals
defined on the model (probability) space, our Taylor expansion relies on the generalized

Fréchet derivatives in the Banach spaces. The proof is provided in Appendix I.

Proposition 1 (Quadratic Preference) The smooth ambiguity-averse preference over the

state- and model-contingent return, 15 wo wa, is represented by the certainty equivalent,

2
C (o) =1y + (1= 07" B B2 (s (1) 4002 () +

(
o, (Ry') = 2 [18. (o3 (R)) + 002 (R ®)

—(0+7) (1 —9)docov, ( "Q"O, R3d> +R (WO,Wd) ,

R(wowl)
wow?) =0 [l (we.wd) [

As in MMR, the residual term can be ignored if portfolios are sufficiently diversified

0.

where R (WO, Wd) s a high-order term that satisfies lim(

with matrix/L? norms close to zero. The approximation allows us to intuitively understand
the investor’s preference. The utility increases in R¥’, the Q-expected excess return on the
investor’s retained wealth, and its sensitivity, (1 — 5)2, decreases in the level of delegation 9.
The utility decreases in 02@ (RWO), the Q-variance of excess return on retained wealth, and
the risk sensitivity increases in -, the risk aversion. The utility decreases in o2 (R‘é"o), which
measures ambiguity, i.e., the cross-model variation of the expected excess return, RZ}’O. The
ambiguity sensitivity increases in €, the ambiguity aversion. As investors delegate more, i.e.,
0 increases, the sensitivities to risk and ambiguity of return on retained wealth both decline.

The delegation return enters into the utility in a similar fashion. The utility increases

in £, (R"Q"d>, which is the expected excess return from delegation averaged over models,

E, (Rgd) - /QEA Eq [(r—rfl)de Q)] dr Q)

where Rgd is the Q-expected excess return from delegation. The utility decreases in o2 <RVQ"d) ,

10



which measures ambiguity, i.e., the cross-model variation of expected excess return from del-
egation, and its sensitivity increases in 6, the ambiguity aversion. The utility decreases in
E, (02Q (Rwd)), a measure of risk averaged by 7 over models, and its sensitivity increases
in v, the risk aversion. The sensitivities to delegation ambiguity and risk both increase in 9.

The terms discussed so far can be summarized into two categories: (1) the expected
returns and return variances and covariances (“risk”) averaged over models; (2) the cross-
model variance of the expected returns (“ambiguity”). The approximation shows how these
statistics enter into utility through risk aversion, ambiguity aversion, and delegation.

The last term deserves more attention. The cross-model covariance between the ex-
pected delegation return and the expected return on retained wealth enters the investor’s
utility with a negative sign. It captures a cross-model hedging motive. When allocating the
retained wealth, the investor prefers assets that deliver high expected returns under mod-
els where the expected delegation return is low. The utility’s sensitivity is maximized at
0= % Intuitively, the comovement between the delegation performance and the investor’s
own investment matters the most when her wealth is split 50/50.

Finally, we show that our quadratic approximation nests MMR’s solution and the

mean-variance utility as special cases.

Corollary 1 Without delegation, i.e., d = 0, the approximation degenerates to the quadratic

approximation in Maccheroni, Marinacci, and Ruffino (2013):

C (r+ @ =r )" [(1 =)W+ 0w (Q)] ) ey + RY — S0 (R™) gag (7). ©

Without delegation and ambiguity aversion, i.e., 6 = 0 and 0 = 0, our approrimation degen-

erates to the mean-variance utility under the average model Q:

s+ B 5o (B). (10

Delegation portfolio. The investor informs her risk aversion, v, to the manager who forms
a mean-variance efficient portfolio given his knowledge of the true model. In the investor’s

mind, for any @) € A, if it is the true model, the managers solves

mae { (1 = rs1)" W = 3 (w) " 55 (w) |

11



The delegation portfolio is a mapping from the model space to real numbers, w? : A — RV,
r -1 r
w'(Q) = (7ZQ) (HQ —rpl). (11)

2.3 Investor Optimization

We solve the optimal level of delegation § and the investor’s portfolio w® by maximizing the

quadratic approximation given by Equation (8). Details are provided in Appendix II.

Proposition 2 (Optimal Delegation) Given the optimal portfolio w°, the investor’s op-

timal delegation level 6 is given by

B, (Ry") = Ry = (0+7) covy (R, RE") v

5= .
E. (Ry") — RS — (0 +7) covr (RS, RY") + 002 (RY")

(12)

Delegation increases if the delegation return is expected to be high across models
(high E, <R3d>), and if it does not vary a lot across models (low o2 <R3d>) Delegation
decreases if the investor achieves a high return on her own, (high Rgo), and if across models,
the expected return on retained wealth comoves closely with the expected delegation return

(high cov, ( Zg"o, R8d> ). The investor are averse to such cross-model comovement.

Proposition 3 (Investor Portfolio) Given the optimal level of delegation ¢, the investor’s

own portfolio of risky assets is given by

w§ = <72r§+ 02?@)1 {(MrQ — rfl) — (0+7) (%) CoV, (,urQ, Rgdﬂ. (13)

/

~
Delegation Hedging

Without delegation, the investor’s portfolio is <72% + 92%)1 (,u% — Tf].) , which is
MMR’s solution.'® Risk is measured by Y%, the covariance matrix of asset returns under
the average model Q. It is scaled by ~, the risk aversion. Ambiguity is measured by Zﬁr"?,
the cross-model covariance of expected asset returns, ug. It is scaled by 6, the ambiguity

aversion. If = 0, the portfolio degenerates to the formula of Markowitz (1959) under Q.

13Garlappi, Uppal, and Wang (2007) derive a similar portfolio by incorporating estimation errors in ex-
pected returns as a source of ambiguity (a maxmin approach as in Gilboa and Schmeidler (1989)).
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When 4 > 0, the portfolio exhibits a hedging demand from cov, <u’é, Rgd), the cross-
model covariance between the expected asset returns, pg,, and the expected delegation return,
Rgd. The investor knows that whichever model is true, the manager knows it and constructs
the efficient portfolio accordingly, but the true model is still unknown. Therefore, the investor
designs her own portfolio to hedge such ambiguity.

The hedging demand does not disappear even if we shut down ambiguity aversion

(0 = 0). The intuition can be explained by inspecting an ambiguity-neutral investor’s utility,

V (rug) = /Q . / () 1Q ()7 Q).

where the subscripts of return on wealth, w and (@), highlight that the return is state-
dependent, and through delegation, model-contingent. An ambiguity-neutral investor cannot
perform Bayesian model averaging and operates under @, but instead, has to deal with the
joint uncertainty of state and model. Therefore, the cross-model covariance between the ex-
pected asset returns and the expected delegation return still appears in investors’ portfolio
choice even if the investor is risk-averse (i.e., having concave u (-)) but not ambiguity-averse.

Let cov, (ug, R8d> denote the i-th element of cov, (/fQ, Rgd) . It is the cross-model co-
variance between asset i’s expected return and the delegation return. When cov, <u8, R"Q"d> >

0, the investor reduces exposure to asset ; When cov, <u8, Rgd> < 0, the investor tilts her
portfolio towards asset ¢, buying an insurance against delegation uncertainty. Next we ex-

plore the implications of delegation hedging on the cross-sectional variation of asset returns.

2.4 The Cross-Section of Asset Returns

We characterize the cross section of expected asset returns and their CAPM alpha. First, we
show that when delegation is unavailable, our model reproduces the key theoretical findings
in the current asset pricing literature. Next, we show how delegation changes the results.
To understand the impact of ambiguity, and in particular, delegation uncertainty, on
the cross section of asset returns, we use CAPM as the natural benchmark. Here, when asset
returns follow normal distributions and w (-) is the CARA (constant absolute risk aversion)
utility, the delegation portfolio, w? (Q), maximizes the expected utility. Therefore, without
ambiguity, investors and managers both choose the mean-variance portfolio and the asset-

market equilibrium is CAPM. Ambiguity causes the deviations from CAPM.
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Equilibrium without delegation. We define the market portfolio m, which is the sum of

investors’ and managers’ asset demands and is also equal to the exogenous asset supply:
m = ow’ (P) + (1 — §) w°. (14)
When delegation is unavailable, the investor’s portfolio is given by

ey -1
wi = (72r§+ HZﬁQ> (,u’t"a — rfl) : (15)

¢

where the subscript “0” is for “zero-delegation”. Since 6 = 0, substituting m = w{ into

Equation (15) and multiplying both sides by (72‘”@ + GE?Q), we have
r r )
p —ryl = (72§+02ﬂ ) m. (16)

Note that Z%m is simply the vector of covariance under @ between the asset returns and the
market return, and Eﬁam is the covariance under 7 between the ezpected asset returns and
the ezpected market return. The former measures risk while the latter measures ambiguity. If
investors’ average model is true, i.e., Q = P, the left-hand side is the assets’ expected excess

returns under the true probability measure, and the right-hand side offers a decomposition.

Proposition 4 (Ambiguity Premium without Delegation) When delegation is unavail-

able, the equilibrium expected excess returns of risky assets are
pp =751 =AmBrm + Awg Bl ms (17)

if investors’ average model is the true model, i.e., Q = P. Here we define: (1) the market
price of risk, Am = 0% (R™), and the risk beta, 8L = %; (2) The market price of
) O'P

ambiguity, Aws = ho2 (Rg), and the ambiguity beta, ﬂZ”Q,m — %

Equation (17) decomposes the expected excess returns. The first component is the
standard CAPM beta multiplied by the standard price of risk (the return variance scaled
by 7). The second component is an ambiguity premium. The ambiguity beta measures
the cross-model comovement between the expected asset returns and the return of investors’

(market) portfolio. If asset 7 has a positive beta (i.e., BZZ}' . > 0), it delivers a higher average
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return. If asset i’has a negative beta, it serves as a hedge against model uncertainty and
delivers a lower average return. Ambiguity beta is priced at Awg = o2 (Rg), which is the
total amount of ambiguity in the expected market return scaled by 0, the ambiguity aversion.

The assumption of ) = P is important. Under ambiguity, investors cannot evaluate
the assets’ expected returns under the true model. Instead, they evaluate assets by averaging
over models, and require fair compensations for risk and ambiguity under Q). Only if Q = P,
the expected returns under investors’ average model, /fa, coincide with the expected returns
under the true model, which are observed by econometricians through the average returns.
Otherwise we cannot solve pp using the optimality condition on investor’s portfolio choice.

The ambiguity premium is CAPM alpha as in MMR. They analyze a special case of
two assets where one has pure risk (known distribution) while the other bears ambiguity.
Kogan and Wang (2003) derive the similar decomposition of expected returns using the
constrained-robust approach. In those models and here, if we shut down ambiguity aversion,

the price of ambiguity, Awe = o2 (Rgg>, is zero, and the model degenerates to CAPM.

Corollary 2 (CAPM without Delegation) When delegation is unavailable and investors

are ambiguity-neutral (6 = 0), the expected excess returns of risky assets are given by
r P
Hp — Tf]‘ - )‘m/Br,m‘ (18)
if the investors’ average model is the true model (i.e., Q = P).

If the investor is ambiguity-neutral, the investor’s utility function can be written as

v = | () Q) dn (@) - / _ul) [ IR <w>dw<@>] -/ _u() G (w).

where the subscript w of return on wealth highlights the fact that the return is only state-
dependent. The investor behaves as an expected-utility agent under @ and chooses the
standard mean-variance portfolio under the quadratic utility, so if @ = P, we rediscover
CAPM. It is critical that u (r) can be taken out of the integral operator, [, on the model
space, because r is not model-dependent. Once delegation is available, r is both state- and

model-dependent, so the equilibrium deviates from CAPM even without ambiguity aversion.

Equilibrium with delegation. When delegation is available, the market portfolio is equal
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to a mixture of managers’ portfolio and investors’ portfolio, i.e., m = dw? (P) + (1 — §) w°.
We arrange the fund manager’s portfolio, w® (P) = (yX%)~" (4% — r;1), under the true

probability distribution P, and arrive at the following expression of expected excess returns:

o — gl = (755 wA (P) 14 (19
Using the rearranged market clearing condition, w? (P) = m — (152) w°, we rewrite (19),
r 1 r 1-9¢ r o
pp—ril= syXpm o+ —— J ¥ (- W), (20)
CAPM Component h C’APJ\?[,Alpha g

Using the definition of market beta in Proposition (4), we can write the first term

covp(r,R™)

W’ and a new

on the right-hand side as the product of assets’ market beta, 65 m =
price of risk, Ay = Zo} (R™), which now depends on delegation. Specifically, an increase
in ¢ leads a decrease in the market price of risk, i.e., a flatter security market line. This
property is in line with the concurrence of a growing asset management industry and a
declining equity premium in the U.S. market (documented by Jagannathan, McGrattan,
and Scherbina (2001), Lettau, Ludvigson, and Wachter (2008) among others).

Substituting investors’ portfolio (Equation (3)) into the second component, we have

a=yXp (72% + 92?@)_1 {(9 + ) cov, <,u22, R"Q"d> — <1%5> (;% — 771)} , (21)

Vv v
Delegation Hedging Average Belief

which has one component from investors’ hedging against delegation uncertainty and the
other from investors’ average belief of expected returns (“sentiment”). A high sentiment is
associated with a low ambiguity premium. This component disappears if § approaches 100%.

The other component from delegation hedging is immune to the changes of delegation
level. As ¢ approaches 100%, the hedging motive becomes increasingly strong as shown by
the coefficient, (1%5), of cov, (,urQ, R"Q"d> in investors’ portfolio (Equation (13)). Therefore,
even if investors manage less wealth when ¢ increases, they hedge more per unit of retained

wealth. When we substitute investors’ portfolio into Equation (20), this coefficient exactly

Note that because p?% already shows up in managers’ portfolio, we do not need to assume @ = P to
solve the equilibrium expected returns as we did for the case without delegation.
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offsets (1%5), the ratio of retained-to-delegated wealth,in the CAPM alpha.

Proposition 5 (Delegation and Ambiguity Premium) The expected excess returns of
risky assets are given by

wp — 1l = Agﬂim%—a. (22)

The market betas, ,Bf’m, are defined in Proposition 4. The price of risk, \s, is %0% (R™). The
CAPM alpha is given by Equation (21), which depends investors’ average belief, (ur@ — rf1> ,
and the cross-model covariance the assets’ expected returns and the expected delegation return,

covy (”227 Rgd>. When & approaches 100% (due to declining management fees or changes in

ey —1
model uncertainty), o converges to %%, <72r§ + 92Z9> (0 + ) covy (,urQ, Rgd>.

When § is precisely equal to 100%, we have m = w? (P), and CAPM reemerges:
r P
Hp — Tf]‘ = ﬂr,m)‘l‘fh (23)

where A\, = R"Pé’d = RP. However, as long as § < 100%, investors need to allocate their
retained wealth under ambiguity. The more they delegate, the stronger they hedge against
delegation uncertainty. Therefore, even if the wealth managed by investors declines and the
wealth allocated on the mean-variance frontier rises, the increasingly strong hedging demand
of investors sustains the CAPM alpha and generates a discontinuity at the limit of § = 100%.

Interestingly, even if we may shut down ambiguity aversion, i.e., @ = 0, the delegation-
hedging component of ambiguity premium still exists. This property distinguishes our model
from the existing models that feature zero ambiguity premium if agents are not ambiguity-
averse. As in the discussion of investors’ portfolio choice (Equation (13)), here the intuition

can be explained by inspecting an ambiguity-neutral investor’s utility function,

V (1) = /Q | wterieen ).

Due to delegation, the return on wealth is both state- and model-dependent. As a result, the
investor cannot perform Bayesian model averaging as she does in the case without delegation,
and has to deal with the joint uncertainty of state and model. Therefore, cov, (,urQ, R‘é"d),
the hedging motive, appears in investors’ portfolio and the ambiguity premium even if § = 0.

In the past few decades, asset management industry has grown dramatically, especially
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in the area of quantitative investment that targets alphas identified in the academic literature.
Many have argued that the strategies’ alphas shrink as arbitrage capital increases (e.g.,
McLean and Pontiff (2016)). Yet many strategies survive, and we will show an example in
Section 3. Together they constitute a rich set of “anomalies” in asset pricing. Our model
sheds light on such phenomena. Professional asset managers obtain arbitrage capital mainly
through investors’ delegation. As delegation increases, investors’ hedging against delegation

uncertainty becomes stronger, which sustains the CAPM alpha.

2.5 Delegation and Fund Performances

Simplifying model uncertainty. Here we simplify the structure of investors’” model un-
certainty to derive intuitive comparative statics for the optimal delegation and characterize
conditions under which delegation happens in spite of funds underperforming the market.
We will also solve asset pricing conditions under the simplified model uncertainty that can
be directly mapped to data for our empirical analysis in Section 3.

We make three assumptions that lead to typical settings of delegation — managers
and investors differ in the knowledge of first moments of return distribution. For example,

managers may receive return signals that improve the precision of expected-return estimates.
Assumption 1 The investor knows the true covariance matriz: for any QQ € A, X7, = ¥p.

Given the quadratic approximation of investor utility, the relevant model uncertainty
is now only in the expected returns, which is captured by the cross-model covariance, EZrQ
under the prior 7.15 This case of known covariance and unknown expected returns echoes the
observation by Merton (1980). Kogan and Wang (2003) also consider this case in their study

of portfolio selection under ambiguity. The next assumption links ambiguity to volatility.

Assumption 2 The investor’s subjective belief over the expected returns is given by a normal

distribution, whose covariance is proportional to the true return variance:

py ~ N (035 ). (24)

15Boyle, Garlappi, Uppal, and Wang (2012), and Ilut and Schneider (2014) introduce ambiguity through
the uncertainty in the mean in models of financial markets and macroeconomy respectively.
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Since pg ~ N <,u%, vEfD), v that parameterizes the level of model uncertainty. This
setup echoes the interpretation of ambiguity as statistical errors by Bewley (2011).1¢ We
may interpret v as the inverse of sample size. If the investor has T observations of r;, the

37 1, and its covariance is £3%.

method-of-moment estimator of the expected return is %

Therefore, $he = vXp with v = % A larger v means a smaller sample and larger estimation

errors. It is natural to assume that v < 1 because % < 1 for non-singleton samples.
Assumption 3 v < 1.

The normality assumption of the prior over yug, brings technical convenience. Specifi-

cally, the expected delegation return can be decomposed as follows,

w r T r T r\—1/ r
Ry = (ug—r1) wi(Q) = (ug—rs1) (vEB) (ug —1s1)
r r r r\— r r r r r\— r r w
= (MQ - u@> (v=5) <MQ - M@) +2 (u@ - Tf1> (vS5) ™! (MQ - u§> + RS,
~ ~~ - N ~- % ~ - ~~
Chi-squared constant vector Normal constant

where the distributional properties are labeled below each term. Using Isserlis’ theorem
and the properties of Chi-squared and normal distributions, we solve in Appendix III the

summary statistics in investors’ optimal portfolio and delegation. In particular, we have

2v
COUL (,urQ, R"Q"d) = - (,L%— rfl) : (25)

so the strength of delegation hedging depends on the level of model uncertainty, v. This
property helps directly map several model implications to data, for example, helping us back

out investors’ ambiguity from data on assets’” CAPM residuals and delegation in Section 3.

Proposition 6 (Comparative Statics) Under the three assumptions, the investor’s port-

folio is given by

WO — <7+10U> (s5) ! [(u’gg— rf1> —(y+0) (%) 271} (ur@— rf1)] . (26)

6 Bewley (2011) formulated the argument that confidence intervals are measures of the level of ambiguity
associated with the estimated parameters. Easley and OHara (2010) adopt a similar formulation.
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The optimal delegation decision is given by

UN U+ [1 — Ue <2U(0+7_) + 1)] Ry
(5 Y+ ol Q - ’ (27)
v\ v v _ v [2v(0+y) wd
(1 QW)WN [1 47 v—l—v@( v 1) ]RQ

where R%d is the expected delegation return under the average model, Q. We have the

following results of comparative statics:

1 The optimal level of delegation ¢ increases in N, the number of risky asset, i.e. > 0.

’<9N

2 The optimal level of delegation & decreases in 6, the ambiguity aversion, v, the level
Of ambiguity, and w, the managemem‘ fee, while increases in v, the risk aversion, i.e.,
<0

< 0 <0, cmd > 0, of N is sufficiently large.

’ae 7aw

3 Given the delegation level §, investors’ positions in risky assets, w°, decrease in 0, the

ambiguity aversion, and v, the level of ambiguity, i.e., 2 < 0 and 2% < 0.

Under the simplified ambiguity, /N, the number of assets, shows up in the investor’s
delegation and portfolio choices because, as previously discussed, the expected delegation
return follows a Chi-squared distribution under the prior 7 and N appears in its mean and
variance as the degree of freedom (details in Appendix III). Intuitively, as the number of risky
assets increases, delegation brings more welfare improvements by transforming the ambiguity
of many individual assets into the cross-model variation of a single efficient frontier.

We may interpret N as the number of risk factors instead of primitive assets. If there are
an infinite number of assets with returns spanned by N factors and their idiosyncratic shocks,
by the law of large numbers, investors can diversify away and ignore idiosyncratic shocks
for any model as long as it is not a point-mass distribution. Back-of-envelope calculation
shows that Equation (27) produces reasonable levels of delegation. If N =10, v=5,0 =1,
Rgd = 4%, ¢ = 1% and v = 1/100, we have § = 49%. It rises to 99% if N = 1000.'7

Holding N constant, delegation decreases in ambiguity aversion (6) and the level of
ambiguity (v), and increases in risk aversion (7). The upside of delegation is that within

a probability model, wealth is allocated efficiently, while the downside of delegation (aside

"In Appendix IV, we obtain the model uncertainty from a Bayesian learning problem, and illustrate how
to incorporate it into the general delegation formula in Proposition 12.
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from the management fee) is the exposure to delegation uncertainty, i.e., the cross-model
variation of frontier. When model uncertainty and the aversion to it are higher, the latter
dominates; when risk aversion is higher (and thus, it is more costly to be away from the
frontiers), the former is more valued. The sum of portfolio weights on risky assets, i.e.,
17w°, is the total risky investment. The investor becomes more conservative, when facing

more ambiguity or having a higher level of ambiguity aversion.'®

Fund performances. As reviewed by French (2008), the evidence on average fund per-
formance suggests that investors are better off not delegating and instead holding indices.
This poses a challenge to understand the growth of professional asset management in recent
decades. In this paper, we shift the focus from ex post performance to ex ante welfare.

Performance measurement assumes that investors have the econometricians’ belief (i.e.,
rational expectation). In reality and our model, investors face model uncertainty. Delegation
improves welfare by transforming ambiguity from individual assets to the frontier and making
investors’ delegated model-contingent. When choosing the level of delegation, the trade-off
is between within-model allocation efficiency and cross-model delegation uncertainty.

Next, we compare the performance of funds and the market return, and show that
even if the latter dominates under rational expectation, delegation may still be positive for
investors under ambiguity. Substituting the investor’s portfolio (equation (26)) into the

market clearing condition, we solve the expected market excess return under the true model:

R® = 6RY' +(1-6)RY

= (up—r1) (v55) 7 {(Mrp —7y1)0+ (’U% a rfl) (

(1 —5)77;55;)(9+7)>} _

The expected excess return of the delegation portfolio is

Wd r r - r
Ry = (up — Tf1>T (vXp) ' (wp — Tf1>

The difference between the two, RE" — R®, is equal to

, (28)

— ()20 (6
(1= 8) (= 1) (7535)" [(u; R r— <v ) 200+ w)

18This is consistent with the comparative statics in settings without delegation (e.g., Gollier (2011)).
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which is also the average performance difference in a large sample.

Proposition 7 (Delegation and Underperformance) Under the simplified ambiguity,

fund managers underperform the market if

N

Dowl (P (1 = 1) < o2 o wi (P) (= 1)

i=1

d

where w¢ (P) is the managers’ portfolio weight on asset i, and the constant s is given by

- (%) 20 (0 + )
= v+ vl ’ (29)

which increases in 0 and v and decreases in 7.

Whether the managers underperform or outperform the market depends on the com-
parison between the weighted-average of assets’ expected returns under the true model and
that under the investors’ average model (scaled by ). Because investors also trade assets,
managers’ performance depends on their relative aggression in risk- and ambiguity-taking.
For example, if investors have in mind a high-return market (i.e. high ;z%), they trade
aggressively and earn a higher average return through more exposure to risk and ambiguity.

Therefore, in our model, delegation can arise in spite of managers’ underperformance
relative to the market. Investors do not know the true model, so they cannot evaluate fund
performances under rational expectation and choose between funds and the market index.
Note that we do not impose any restriction on investors’ portfolio choice, so holding the
market portfolio is certainly within investors’ opportunity set.

Another commonly used performance metric is funds’ CAPM alpha (Jensen (1968)).
Let us consider the case where ;% = up, and as a result, investors’ portfolio is proportional

to the delegation portfolio (and the market portfolio):

o (1—(’y+0) (15) 2

¥+ 6v ) () (up —7s1). (30)

Therefore, CAPM holds. A regression of funds returns on the market return shows exactly
zero alpha in a large sample. After management fees, investors receive negative alpha from

delegation. Moreover, managers hold the market portfolio up to a scaling factor, as have
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already been documented in the empirical literature (e.g., Lewellen (2011)).

Proposition 8 (Delegation and Alpha) Under the simplified ambiguity, z'f;% = up, the

delegation portfolio has zero alpha (negative after fees) and is proportional to the market.

Another interesting implication of our model is that even if managers possess supe-
rior knowledge and know the true model, this may not help them to generate “market
risk-adjusted return”. This result challenges the traditional approach of fund performance
measurement: an asset management firm could be active in acquiring the knowledge of true

return distribution, but such effort is unlikely to be compensated if we only look at alpha.

Simplified ambiguity premium. We derive several conditions on the relation between
model uncertainty and assets’ CAPM alpha that directly guide our empirical analysis. Under

the three assumptions, the CAPM alpha in Equation (21) becomes

o [) (g (o)

[\ [\

Vv Vv
Delegation Hedging Zero-Delegation Component

The cross-sectional variation of « is from (,ur@ — Ty 1), the vector of expected excess returns
under investors’ average model. Therefore, a dispersion becomes larger if its coefficient
increases, for example when model uncertainty increases (higher v). In Section 3, we test

whether the cross-section dispersion of CAPM alpha increases when uncertainty rises.

Proposition 9 (Uncertainty and Alpha Disperstion) Given §, the cross-section dis-

persion of alpha increases in model uncertainty, v, as shown by Equation (31).

As ¢ approaches 100%, the component of CAPM alpha from the zero-delegation part
of investors’ portfolio shrinks to zero, while the component from delegation hedging remains.
Interestingly, investors’ average belief, which reflects potential behavioral biases, survives in
a through delegation hedging. This is not due to the limits to arbitrage in the existing
models of behavioral finance (Barberis and Thaler (2003)). Here when investors delegate
more, feeding managers with more arbitrage capital, they hedge more. Hedging against

delegation uncertainty sustains alpha.'?

190ur model does not speak to the evolution of wealth distribution between rational and irrational agents
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Another application of our theory is to extract investors’ model uncertainty from data.
Measuring model uncertainty is very challenging because, by nature, ambiguity is subjective.
However, as shown by Equation (31), if the model uncertainty, v, varies over time, the relation
between alpha and investors’ expectations varies. Therefore, if we could obtain a measure
of investors’ expectations, i.e., (;%— rf1>, we can back out the dynamics of investors’
model uncertainty by projecting assets’” CAPM residuals on investors’ expectation in rolling
windows while controlling for the delegation level. In Section 3, we estimate investors’ model

uncertainty by using surveys on investors’ expectations as proxy for (/ﬂa — rf1>.

Proposition 10 (Extracting Model Uncertainty from Data) Conditional on the level
of delegation, ¢, the relation between assets’ CAPM alpha and investors’ expectations under

the average model reveals the level of model uncertainty, as shown by Equation (31).

3 Evidence

We provide evidence on our model assumptions and main results using data on asset returns,

assets’ ownership by funds and individual investors in the U.S. stock market.

3.1 Data and Variable Construction

Our model is built upon the assumption that investors and managers have different beliefs
on asset returns. Our main results, and in particular, the cross section of assets’” CAPM
alpha, are determined by investors’ subjective model uncertainty. The challenge in testing
our model assumption and results is that we do not observe investors’ and managers’ be-
liefs. Therefore, taking a revealed-preference approach, we examine their beliefs through the

observed portfolio rebalancing and test the model predictions on asset returns.

Asset space. We use the well-studied equity factors instead of individual stocks as the

asset universe, because these factors largely span individual stocks’ returns. Factors can be

over time. Goldman and Slezak (2003) study persistent erroneous information in asset prices from shorter
tenures of fund managers than the time it takes for their private information to become public. Many
studies focus on asset-price distortions due to managers’ incentive problems, such as Basak and Pavlova
(2013), Buffa, Vayanos, and Woolley (2014), Cuoco and Kaniel (2011), Dow and Gorton (1997), Guerrieri
and Kondor (2012), Kaniel and Kondor (2013). Géarleanu and Pedersen (2018), Huang (2016), Kacperczyk,
Van Nieuwerburgh, and Veldkamp (2016), and Sockin and Zhang (2018) emphasize information acquisition.
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either accounting-based or return-based. Accounting-based factors include value (“HML”),
accruals (“ACR”), investment (“CMA”), profitability (“RMW?”), and net issuance (“NI”).
Return-based factors include momentum (“MOM”), short-term reversal (“STR”), long-term
reversal (“LTR”), betting-against-beta (“BAB”), idiosyncratic volatility (“IVOL”), and total
volatility (“TVOL”). To construct each factor, we use monthly and daily returns data of
stocks listed on NYSE, AMEX, and Nasdaq from the Center for Research in Securities Prices
(CRSP).% We obtain accounting data from annual COMPUSTAT files.?!

We construct each factor in the typical HML-like fashion by independently sorting
stocks into six value-weighted portfolios by size (“ME”) and the factor characteristic. We
use standard NYSE breakpoints — median for size, and 30th and 70th percentiles for the factor
characteristic. A factor’s return is the value-weighted average of the two high-characteristic
portfolios minus that of the two low-characteristic portfolios. We rebalance accounting-based

factors annually at the end of each June and rebalance the return-based factors monthly.

Portfolio allocation. To measure investors’ factor allocation, we use the Thomson-Reuters
13F Database from 1980Q1 to 2016Q4, which covers stock ownership by mutual funds, hedge
funds, insurance companies, banks, trusts, pension funds, and other institutions. For each
stock, we sum the institutional holdings and define the remaining fraction as individual
ownership (“INDV?) following Gompers and Metrick (2001) and Fang and Peress (2009).
Ideally, we would like to treat each factor as an asset and compute the fraction owned
by individual investors. However, factors are comprised of numerous stocks and different
factors have overlapping constituents. For example, stock A could be in the long leg of value
factor and the short leg of momentum factor. Instead of calculating the exact ownership, we
calculate the relative over- or under-weight of each factor by individual investors. Specifically,

we measure the spread of aggregate IN DV between the factor’s long leg and short leg:
INDV;,; = INDV;?" — INDV;"t (32)

where I N DVZt, j € {long, short}, is the value-weighted average of the individual ownership

of all constituent stocks in j leg of factor i.

20We include ordinary common shares (codes 10 and 11) and adjust delisting with CRSP delisting returns.
21We follow the convention and lag accounting information by six months (Fama and French (1993)). If a
firm’s fiscal year ends in Dec. of year ¢, we assume information is available at the end of Jun. of year t + 1.
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We follow a similar approach to measure managers’ factor ownership, but only use
data on mutual funds because their investment objective code (IOC) can be obtained from
CRSP. We select funds focusing on the U.S. stock market using IOC, excluding International,
Municipal Bonds, Bond & Preferred, and Balanced.??> We aggregate fund holdings for each
stock. Stocks are assumed to have zero fund ownership if they appear in CRSP but without
any reported fund holdings. We calculate the relative over- or under-weight of each factor

by managers as the spread of fund ownership (“INST”) between the long leg and short leg:
INST;, = INST/{" — INST; ;" (33)

where IN Sﬂ{t, Jj € {long, short}, is the value-weighted average of fund ownership of all
constituent stocks in j leg of factor 7. If managers find factor i’s return distribution is

desirable, they increase exposure to ¢, and accordingly, /N .ST;; increases.

Uncertainty measures. We obtain measures of uncertainty in the existing literature to
test our model predictions and to compare with our model-implied measure of uncertainty.
In particular, we consider the first principal component (UF°“) and cross-sectional average
US4 of uncertainties estimated using macro and financial variables from Jurado, Ludvig-
son, and Ng (2015); Economic Policy Uncertainty (EPU) and news-based Economic Policy
Uncertainty (EPU™"%) from Baker, Bloom, and Davis (2016); CBOE stock market volatil-
ity indexes VIX and VXO (Williams (2015)). We include volatility measures because, as

shown in Section 2.5, volatilities affect the uncertainty (estimation errors) in the mean.?

Investor expectations. To extract investors’ ambiguity from data, we need investors’
expectations on asset returns under the average model, Q. We use the survey forecasts from
the American Association of Individual Investors Sentiment Survey (“AA”), which measures

the percentage of individual investors who are bullish, neutral, or bearish on the stock market

22We apply standard filters following the literature: (1) we pick the first vintage date (“FDATE”) for each
fund-report date (FUNDNO-RDATE) pair to avoid stale information; (2) we adjust shares held by a fund
for stock splits that happen between report date (“RDATE”) and vintage date (“FDATE”). As a robustness
check, we select only active domestic equity funds, and find similar results (available upon request).

ZRelated, Driouchi, Trigeorgis, and So (2018) introduce ambiguity into the Black-Scholes model through
Choquet-Brownian motions, and measure ambiguity by minimizing the absolute error between index options
prices and the model-implied values. Andreouyz, Kagkadisx, Maio, and Philipz (2014) measure ambiguity
using the dispersion of index option strike prices. Ulrich (2013) uses inflation entropy to measure ambiguity.
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for the next six months.?* Following Greenwood and Shleifer (2014), we construct a time
series of investor expectations by subtracting the percentage of bearish investors from the
percentage of bullish investors, and average the weekly data to monthly frequency.

Table 1 reports summary statistics of factor returns, the factors’ fund and investor

ownership, the uncertainty measures, and the survey expectations.

[ Insert Table 1 here. |

3.2 The Cross Section of Factor Alpha

We test our main results on asset pricing, Proposition 5, and characterize the cross section
of factors” CAPM alpha. The challenge is that as shown in Equation (21), alphas (ambiguity
premia) depend on investors’ subjective belief, i.e., the set of candidate models, A, and their
prior, 7, which cannot be estimated from data. To address this issue, we back out investors’
belief from the observed portfolio rebalancing, taking a revealed-preference approach.
Consider an increase of model uncertainty. Investors’ hedging against delegation un-
certainty becomes stronger. They increase positions in assets whose expected returns move
against that of the efficient frontier across models (delegation-hedging assets), while de-
crease positions in assets whose expected returns comove with that of the efficient frontier.
We rank factors by the correlation between individual ownership (//NDV') and uncertainty.
The model predicts smaller CAPM alphas of assets with higher correlations, which, revealed

by investors’ portfolio rebalancing, offer better insurance against delegation uncertainty.
[ Insert Table 2 here. |

Table 2 confirms the prediction. We divide the eleven factors into equal-weighted high
(“H”) portfolio (six factors) and low (“L”) portfolio (five factors) by the correlation between
a factor’s individual ownership and the uncertainty measure, 4“4, from Jurado, Ludvigson,
and Ng (2015). The annualized CAPM alphas are reported together with t-statistic. The
alpha of H portfolio is indistinguishable from zero. It contains delegation-hedging assets
because investors overweigh these assets as uncertainty rises. The L portfolio, which exposes

investors to more delegation uncertainty, carries a CAPM alpha of 2.67%. The L-minus-H

24Greenwood and Shleifer (2014) show that this qualitative measure captures similar dynamics as the
quantitative measures from surveys that explicitly ask individuals’ numeric expectations of market returns.
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portfolio has a significant CAPM alpha of 2.59%. In the right panel, we estimate CAPM
alphas after controlling for the delegation level, which maps more closely to Equation (21).
Table A.1 in the appendix shows a similar pattern when other uncertainty measures are

used.
[ Insert Figure 1 and 2 here. |

Figure 1 plots the CAPM alphas of H and L portfolios estimated in 60-month rolling
windows. Except for a period in the early 2000s, the alpha of H portfolio dominates that of
L portfolio. This suggests that the results in Table 2 are not driven by a particular episode.

In Panel A of Figure 2, we plot the full-sample alphas of all factors against the corre-
lation between their individual ownership and uncertainty, and in Panel B, we control for 4.
The model predicts a negative relation in the cross section (a downward-sloping regression
line), which largely holds in data except for the momentum factor. For comparison, we plot

the cross section without momentum in Panel C and D.

3.3 Uncertainty and Time-Varying Alpha Dispersion

Having characterized the cross section of factor alphas, we next test our model’s prediction
on how the cross section varies over time. Proposition 9 states that given 9, the cross-section

dispersion of alpha increases in the level of model uncertainty (Equation (31)).
[ Insert Figure 3 here.]

Figure 3 plots for each month, the cross-section dispersion (the difference between
maximum and minimum) of factors’ CAPM residuals against each of the six uncertainty
measures. The uncertainty measures are lagged by a month because the model implies a
relation between uncertainty and the ezpected dispersion of CAPM residuals (i.e., the alpha
dispersion) rather than the realized dispersion. A strong positive correlation emerges. Figure

A.1 in the appendix reports similar patterns for the dispersion of factors’ raw returns.
[ Insert Table 3 here.]

Table 3 reports the results of parametric tests. We consider two measures of dispersion,

the difference between max and min, and the cross-section standard deviation of factors’
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CAPM residuals. We forecast the dispersion with uncertainty measures (Panel A). In Panel
B and C, we control for the raw and detrended aggregate fund ownership (i.e., § in data)
respectively, mapping the specifications more closely to Equation (31). Table A.2 in the
appendix reports the results for factor return dispersion.

Across specifications, measures of uncertainty positively predict the dispersion of fac-
tors’ CAPM residuals and returns. The economic magnitude is sizable. For example, an 1%
(one standard deviation) increase of US54 predicts a 0.46% (annualized to 5.52%) increase

of the cross-section standard deviation of factors’ CAPM residuals.

3.4 Factor Timing by Fund Managers

We test our modeling assumption that managers know the asset return distribution better
than investors. Here we also take a revealed-preference approach. As we have shown in
Section 3.3, the cross section of factor alphas and returns vary over time. If our assumption
holds in data, we should be able to observe that fund managers rebalance their portfolio
towards factors with superior distributional properties in the next period.

Specifically, we estimate the following predictive regression: for factor i at time t,
Rijpps=a+B-INST; +v- X+ €ipi43 (34)

where i = {HML, ACR,CMA, RMW,NI, MOM,STR, LTR, BAB,IVOL,TVOL}, and
R, ;145 is the return next quarter (i.e., month ¢ to ¢t 4+ 3), and X;, includes control variables
such as factor volatility that may also predict factor returns (Moreira and Muir (2017)). We
use the next-quarter return because institutional ownership data is available quarterly for
individual stocks. Note that INST at factor level varies every month due to the monthly
rebalancing of value-weighted factor portfolios. Therefore, our estimation is at monthly level
but with overlapping left-hand side variables. Our hypothesis is that a factor will deliver

higher return in the future if its manager ownership, I N ST, increases now.
[ Insert Table 4 here. |

To increase statistical power, we pool factors together to a panel predictive regression.

In Table 4 Panel A, we report the results using pooled OLS and various fixed effects. RV;,

29



is the realized volatility of factor ¢ estimated using previous 36 months of returns (Moreira
and Muir (2017)). Standard errors are double-clustered by factor and quarter.

As typical in the literature of return predictability, we address the concern over biased
standard errors due to overlapping observations. We follow the suggestion of Hodrick (1992)

and run the following “reverse” regression to test the return predictability:

2
IX Ry =a+f (% Z INSTi,t—j) +7 - Xt + g1 (35)
5=0
On the left-hand side is R; 41, the future one-month return multiplied by 3 so that it is
comparable in magnitude with quarterly returns. Results are reported in Table 4 Panel B.

Our modeling assumption is confirmed in all specifications. In both panels, the pre-
dictive coefficient of INST is positive and significant, robust to alternative standard errors
and various fixed effects. The coefficients in simple predictive regressions and the Hodrick
reverse regressions are very close. Moreover, the predictability is economically meaningful.
For example, the coefficient 0.31 in the first column of Panel B implies that, when INST
of a factor rises by one standard deviation, the return increases by 44 bps in the following
quarter (1.76% annualized). Given the average annual factor return of 3.31% in our sample,
this is a 53% increase over the average. The evidence of factor timing by fund managers lends

support to our assumption that managers possess superior knowledge of return distribution.
[ Insert Figure 4 here. |

As a non-parametric test, we rank factors by their INST at the end of each quarter,
and form equal-weighted high (four factors), medium (three factors), and low (four factors)
portfolios. As shown in Panel A of Figure 4, high-INST factors consistently outperform
low-INST ones since 1991. The fact that this pattern started in the early 1990s suggests
that asset managers may have benefited from the exploding research efforts devoted to equity
factors, more data sources, and the developments of financial econometrics before the 1990s.

Another prediction of our model is that the asset-market equilibrium does not converge
to CAPM as the level of delegation rises. To examine this property, we plot the CAPM alpha
of the high-INST portfolio (left Y-axis) and the aggregate fund ownership (right Y-axis),
i.e. 0, in Panel B of Figure 4. While the latter has trended up in the recent decades, the

former also increased with occasional decline. Overall there is no evidence that a growing
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asset management sector is associated with declining alpha and convergence to CAPM.
[ Insert Table 5 here. |

So far, we have examined the first moment of factor returns. In Table 5, we report
higher moments and other statistics of factor portfolio returns. High INST factors exhibit
high mean return, low volatility, and small skewness. These statistics vary monotonically in
INST, suggesting that asset managers tend to invest in factors with a desirable statistical
profile. Managers also tend to hold stocks with higher kurtosis. Under ambiguity, investors
refrain from factors with more extreme returns, while asset managers are more willing to

take on such exposure possibly due to their confidence in gauging the return distribution.

3.5 Model-Implied Uncertainty Measure

Due to the subjective nature of ambiguity, it is challenging to measure the uncertainty that
investors face when making delegation and asset-allocation decisions. Proposition 10 shows
how to extract ambiguity from assets” CAPM alpha, investors’ expectations, and delegation.
Next we use a two-step procedure to estimate the model-implied uncertainty, v.

First, given a 60-month window starting in month ¢, we run a panel regression of
factors’ excess returns on the market excess return and survey expectations: for factor ¢ in

month s € [t, ¢+ 59,
Tis —Tfs = +big X ("ars — Tps) + ¢ X Surveys—y + €; s, (36)

where 7 5 is the risk-free rate and the coefficients’ subscript ¢ marks the rolling window.
This regression is the empirical counterpart of Equation (31). However, the left-hand
side of Equation (31) is CAPM alpha, while that of the regression is realized factor return.
Therefore, we control for the market excess return and allow different factors to have different
betas, i.e., the whole CAPM component. Moreover, survey is lagged because in the model,
investors’ expectations are matched with ex ante alpha instead of ex post, realized CAPM
residuals. Finally, note that our survey data is on investors’ expectations of future market
return instead of individual factors’ returns, i.e., <,L% - rf1>. It is an imperfect proxy, but

readily available and one of the most widely used survey variables.
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Next, we use the time series of regression coefficient ¢; to back out investors” model
uncertainty. In the model, ¢; combines both the level of delegation ¢ and the model uncer-
tainty v. Therefore, we regress ¢; on the time-t aggregate fund ownership,d;, and take the

OLS residual as our model-implied measure of investors’ ambiguity, which we denote by 0.
[ Insert Figure 5 here. |

Figure 5 plots the time series of our estimated model uncertainty v;, together with the
composite uncertainty measure (UF4) extracted from a large set of macro and financial
variables by Jurado, Ludvigson, and Ng (2015), Economic Policy Uncertainty (EPU) of
Baker, Bloom, and Davis (2016), and CBOE stock market volatility index (VIX). The
estimated model uncertainty exhibits an economically meaningful dynamics, peaking around
major episodes of market turmoils such as the dotcom bubble and the financial crisis. It
carries information distinct from other uncertainty measures. Even though different measures
are not capturing the same object in theory, they are correlated. Specifically, our uncertainty

measure, ¢, has a correlation of 0.5 with /7“4,

4 Conclusion

A division of knowledge between managers and investors leads to delegation, but at the same
time, generates delegation uncertainty. We highlight the welfare gains from delegation that
resolve several puzzles on delegated portfolio management. Our theory also delivers asset
pricing implications supported by evidence. A key insight is that investors’ hedging against
delegation uncertainty creates CAPM alpha that is immune to the rise of arbitrage capital.

Delegation uncertainty arises wherever agents differ in their access to information.
While we focus on the application in financial markets, similar research questions can be
cast in other economic settings. For example, communication within an organization is
imperfect given the scarce attention (Dessein, Galeotti, and Santos (2016)). In such cases,
delegation uncertainty induces distortion in the resource allocation within an organization.

Ambiguity has attracted enormous attention in the macroeconomics literature (Bianchi,
[lut, and Schneider (2018)). Informational specialization and delegation are ubiquitous, but
are often ignored in macroeconomic models. By showing that delegation significantly changes
the role of uncertainty in agents’ decision making, our work suggests that incorporating del-

egation can bring new insights on the macroeconomic consequences of model uncertainty.
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Appendix I: Quadratic Approximation

Define q as the Radon-Nikodym derivative of Q w.r.t. Q, i.e., q¢(w) = Zgg:; for w € Q. In the

following, we use () and ¢ interchangeably to denote a candidate probability model. Define

the following function corresponding to the certainty equivalent:
F (r,wo,wd) =C (rf + (r — Tf].)T [(1 —9)w’+ ow? (q)})

Hence, F': B(2,R) xRN x L R is a functional defined on three Banach spaces, where
B (2, R) denotes the set of mappings from € to R.

Frechet derivatives of (. Here we list several useful expressions and definitions

e (W) = gty and ¢ () = (Wou () = SO

’(’U 1

_ " V" (v71()
. (1) =—qua”pw&qm?

o ¢" ()= (voul()) = ['<(u_1(() ?2 { g <))) - 1;5:_1(())))]

u ’ ¢
[} Deﬁne Y= _u’(rf) and 0 = —U (’I"f) W

e Denote DyoF (r,w® w?) and D« F (r,w’, w?) to be the first-order Fréchet derivatives
of C' with respect to w® and w¢, and D?,F (r,w",wd) and vadF (r,w",wd) to be

the second-order Fréchet derivatives of C' with respect to w® and w?.
e Denote V (r,w?, w?) = [, & ([, u (T5.wowt) dQ (w)) dr (g), so V (r,0,0) = ¢ (u(ry)).
e Denote U (r,w®, w(q)) = [, u (75 wowd) dQ (w), so U (r,0,0) = u(ry).

e For any random variable R and probability measure P, u% denotes the mean of R

under P, Y& the covariance of R under P if R is vector and 0% (R) the variance under

P if R is scalor.

Derivatives w.r.t. w?. First, calculate the Fréchet derivatives of V' (r, w, Wd)
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DyaV (r,w®,w?) (8)
= [ (@) 22T 5 () 1 g

_ /¢ (r, w*, )/Qu' (Fowond) 8 (r — 771)7 8 (q) dQ (w) drt (q)

which is a row vector, and

D2,V (r,wo,wd) (61,02)

_ /A‘b// (U (r, w*, w' () (/Qu' (rswowa) 0 (r —11)" 85 (q) dQ (w))

</Qu (ramond) 3 (r — 151)7 81 (q) ) /¢ (v, w*, w ()

/ u” (7"57wo7wd) 528, (q)T (r—rfl)(r— rfl) 2 (q) dQ (w) dr (q)
Q
which is a N-by-N matrix. Evaluate at (WO, wd) =0and d =6, =90, =

Dg.V (r,0,0) (wd) = V' (ry)0E; (EQ ((r — rfl)T w (q)))

D3V (1,0,0) = ¢ (u(rp) [ (ry)]" 6°Ex ([EQ (=r)"w mf) '

o ([ ww)]))

¢ (u(rs))u” (ry) (6%) Ex

By chain rule,

DV (r,w°, w?) (6)
v (vTH(V (v, we, wd)))

/ d)v 1r v, w(0))) /u (o) 8 (x — 171)7 8 () dQ (w) drt ()

(r;we, w))) Jo

STV ESSD) 1y (e we,w) (0
[V (v (V(I‘,Wo,wd)))]S[ waV (v, W, w) (81)]
D24V (r,w®, w?) (81, 85)

v (0T (V (r, we, wi)))

DyaF (r w° wd) () =

D?NdF (I‘,W ,Wd> (61,52) = —

[DWdV (r,wo,wd) (52)] +
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Evaluate at (w°, w?) =0 and § = §; = §; =

DyaF (r,0,0) (w') = 0E, (EQ ((r — 1) wl (q)>>
D2,F (r,0,0) (wd,wd) = —05°Var, (EQ ((r — Tfl)T w (q))) —
6% E, (aé <(r - rfl)T w (q)))

Derivatives w.r.t. w°. First, calculate the Fréchet derivatives of V (r, w, wd):

DyoV (r,w®, w?) (8)
= /gb rw . w )E)U(r,w,w (q))édw(q)

ow?°

= / ¢’ (U (r,w’, w?(q))) /Qu' (swowd) (1= 0) (r— r11)" 8dQ (w) dr (q)

which is a row vector, and

(1w, W) (81,8)

/¢” (r,w*, w' () </Qu (Foond) (1 6) (r—rfl)TéldQ(w)>
</u (ramowd) (1= 8) (r — /1) 8,dQ) (w)) dr (q) +

ot ron [t

r—rfl)(r—rfl)